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Abstract

Upgrading the software of long-lived distributed systems is difficult. It is not possible

to upgrade all the nodes in a system at once, since some nodes may be down and halting

the system for an upgrade is unacceptable. This means that different nodes may be

running different software versions and yet need to communicate, even though those

versions may not be fully compatible. We present a methodology and infrastructure

that addresses these challenges and makes it possible to upgrade distributed systems

automatically while limiting service disruption.

1 Introduction

Our goal is to support automatic software upgrades for long-lived distributed systems, like
server clusters, content distribution networks, peer-to-peer systems, and sensor networks.
Since such systems are long-lived, we must expect changes (upgrades) in their software over
time to fix bugs, add features, and improve performance. The key challenge to upgrading
such systems is enabling them to provide service during upgrades.

Ideally, a distributed system would upgrade the software on all its nodes simultaneously
and instantaneously and then would resume operation from the “appropriate” state. In
reality, upgrades are not instantaneous: they take time, so nodes will be unavailable while
they upgrade.1 A good upgrade is one that upgrades all the nodes in the system in a timely
manner, transforms their persistent state from the old version’s representation to one that
makes sense in the new version, and does so with minimal service disruption.

Earlier approaches to automatically upgrading distributed systems [11–13, 25, 27, 35] or
distributing software over networks [1–5, 7, 21, 39, 42] do little to ensure continuous service
during upgrades. The Eternal system [41], the Simplex architecture [38], and Google [19]
enable specific kinds of systems to provide service during upgrades, but they do not provide
general solutions.

Our approach to upgrading takes advantage of the fact that long-lived systems are robust :
they tolerate node failures, and they allow nodes to recover and rejoin the system. Nodes
are prepared for failures and know how to recover to a consistent state. This means that we

1Dynamic updating systems [17, 18, 20, 23, 24, 30] can reduce the time required to upgrade a node, but
they still require time to install new code and to transform a node’s state.
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can model a node upgrade as a soft restart. But even with this assumption, there are several
challenges that a general approach for upgrading distributed systems must address:

First, the approach must provide a way to define upgrades, propagate these definitions
to nodes, and cause the upgrade to happen, while allowing administrators to monitor and
control upgrade progress. For large-scale or embedded systems, it is not practical for a
human to control upgrades, e.g., by doing a remote login to a node from some centralized
management console and installing the upgrade, taking care of any problems as they arise.
Therefore, upgrades must propagate automatically.

Second, the approach must enable the system designer to control when individual nodes
upgrade. It is not practical to halt the system and then cause all nodes to upgrade, since
at any moment some nodes may be powered down or not communicating. Furthermore,
providing continuous service may require that just a few nodes upgrade at a time. Also, the
designer may want to test the upgrade on a few nodes to verify that the new code is working
satisfactorily before upgrading other nodes.

Third, since nodes upgrade at different times, the approach must enable the system to
provide service when nodes are running different versions. This is simple when upgrades
just correct errors or extend interfaces. But upgrades might also change interfaces in incom-
patible ways: a node might cease supporting some behavior that it used to, either because
providing the old behavior would be uneconomical or because the upgraded system provides
the behavior in a different way. These incompatible changes are the most difficult to deal
with because they can lead to long periods when nodes that need to communicate assume
different interfaces. A system must continue to run (possibly in a somewhat degraded mode)
even when such incompatibilities exist.

Finally, the approach must provide a way to transform the persistent state of nodes from
the old versions’ representation to that of the new version. These transformations must
capture the effects of all previous operations made on the nodes, since clients depend on the
upgraded system to maintain that information.

To address these challenges, our approach includes an an upgrade infrastructure, schedul-
ing functions, simulation objects, and transform functions.

The upgrade infrastructure is a combination of centralized and distributed components
that enables rapid dissemination of upgrade information and flexible monitoring and control
of upgrade progress. This thesis will describe a prototype of the infrastructure and will
evaluate it in several scenarios.

Scheduling functions (SFs) are procedures that run on nodes and tell them when to
upgrade. Scheduling functions make it simple to define upgrade schedules like “upgrade
server replicas one-at-a-time” and “upgrade a client only after its servers upgrade.” A
designer can customize an upgrade schedule to the capabilities and needs of the system
being upgraded. But this generality has risks: a bad upgrade schedule could disrupt service
or could cause an upgrade to stall. This thesis will define a framework to support scheduling
functions and will investigate techniques for mitigating their risks.

Simulation objects (SOs) are adapters that allow a node to behave as though it were
running multiple versions simultaneously. Unlike previous approaches that propose similar
adapters [18,32,36,40,41], ours includes correctness criteria to ensure that simulation objects
reflect node state consistently across different versions. These criteria require that some in-
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teractions made via SOs must fail; we identify when such failure is necessary and, conversely,
when it is possible to provide service between nodes running different versions.

Transform functions (TFs) are procedures that convert a node’s persistent state from one
version to the next. This thesis will explain how TFs interact with SOs to ensure that nodes
upgrade to the correct new state. This thesis will not attempt to automate the generation
of transform functions or simulation objects, although previous work suggests that this is
possible [23, 28, 41].

The rest of the proposal is organized as follows. Section 2 presents our upgrade model
and assumptions. Section 3 describes the upgrade infrastructure, and Section 4 introduces an
upgrade example. Section 5 describes scheduling functions; Section 6, simulation objects; and
Section 7, transform functions. Section 8 presents informal correctness criteria for simulation
objects and transform functions. Section 9 discusses related work. Section 10 gives a schedule
for the thesis, Section 11 identifies required facilities, and Section 12 discusses future work.

2 Model and Assumptions

We model each node as an object that has an identity, a type, and state. A node is fully-
encapsulated, so the only way of accessing its state is by calling its methods. A node runs
some top-level class that implements its type. The underlying implementation may be a large
code image composed of many components and libraries, but we only consider a node’s top-
level behavior. Systems based on remote procedure calls [?] or remote method invocations [?]
map easily to this model. Extending this model to message-passing [?] is future work. We
also assume there is just one object per node; supporting multiple objects per node is also
future work.

A portion of an object’s state may be persistent. Objects are prepared for failure of their
node: when the node recovers, the object reinitializes itself from the persistent portion of its
state.

Our approach defines upgrades for entire systems, rather than just for individual nodes.
A version defines the software for all the nodes in the system (like a schema for an object-
oriented database defines the types for all the objects in the database). Different nodes may
run different top-level classes, e.g., a version can define one class for clients and another for
servers. We say that a node is running at a particular version if it is running some class
defined by that version. If two nodes are running at the same version, then we assume that
they can communicate correctly with one another, e.g., a client and a server running at the
same version should use the same communication protocol.

An upgrade moves the system from one version to the next. We expect upgrades to be
relatively rare, e.g., they occur less than once a month. Therefore, the common case is when
all nodes are running the same version. We also expect that before an upgrade is installed, it
is thoroughly debugged; our system is not intended to providing a debugging infrastructure.

An upgrade identifies the classes that need to change by providing a set of class up-
grades: 〈old-class, new-class, TF, SF, past-SO, future-SO〉. Old-class identifies the class
that is now obsolete; new-class identifies the class that is to replace it. TF is a transform
function that generates the new object’s persistent state from that of the old object. SF
is a scheduling function that tells a node when it should upgrade. Past-SO and Future-SO
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Figure 1: The structure of an upgrade definition.

are classes providing simulation objects. Past-SO ’s object implements old-class’s behavior
by calling methods on the new object (i.e., it provides backward compatibility); Future-SO ’s
object implements new-class’s behavior by calling methods on the old object (i.e., it provides
forward compatibility). An important feature of our approach is that the upgrade designer
only needs to understand the new version and the old one.

We assume class definitions are stored in well-known repositories and define the full
implementation of a node, from its top-level behavior down to its libraries and operating
system. Package systems [1, 5, 7] provide standard ways of encapsulating class definitions.
Figure 1 depicts the full structure of an upgrade definition.

Sometimes new-class will implement a subtype of old-class, but we do not assume this.
When the subtype relationship holds, no past-SO is needed, since new-class can handle all
calls for old-class. Often, new-class and old-class will implement the same type (e.g., when
new-class just fixes a bug or optimizes performance), in which case neither a past-SO nor a
future-SO is needed.

We assume that all nodes running the old-class must switch to the new-class. Eventually
we may provide a filter that restricts a class upgrade to only some nodes belonging to the
old-class; this is useful, e.g., to upgrade nodes selectively to optimize for environment or
hardware capabilities.

3 Infrastructure

The upgrade infrastructure consists of four kinds of components, as illustrated in Figure 2:
an upgrade server, an upgrade database, and per-node upgrade layers and upgrade managers.

A logically centralized upgrade server maintains a version number that counts how many
upgrades have been installed in the past. An upgrade can only be defined by a trusted party,
called the upgrader, who must have the right credentials to install upgrades at the upgrade
server. When a new upgrade is installed, the upgrade server advances the version number
and makes the new upgrade available for download. We can extend this model to allow
multiple upgrade servers, each with its own version number.

Each node in the system is running at a particular version, which is the version of the
last upgrade installed on that node. A node’s upgrade layer labels outgoing calls made by
its node with the node’s version number. The upgrade layer learns about new upgrades
by querying the upgrade server and by examining the version numbers of incoming calls.
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Figure 2: An example system that consists of an upgrade server and a single system node.
Arrows indicate the direction of (remote) method calls. The upgrade server stores the
upgrade database and publishes upgrades for versions 1 through 4. The node is running
at version 2, has a chain of past-SOs for versions 0 and 1, and has a chain of future-SOs for
versions 3 and 4.

This exchange of version numbers is an optimization that propagates information about new
upgrades in a very lightweight way.

When an upgrade layer hears about a new version, it notifies the node’s upgrade manager.
The upgrade manager downloads the upgrade for the new version from the upgrade server
and checks whether the upgrade contains a class upgrade whose old-class matches the node’s
current class. If so, the node is affected by the upgrade. Otherwise, the node is unaffected
and immediately advances its version number.

If a node is affected by an upgrade, its upgrade manager fetches the appropriate class
upgrade and class implementation from the upgrade server. The upgrade manager verifies
the class upgrade’s authenticity then installs the class upgrade’s future-SO, which lets the
node support (some) calls at the new version. The node’s upgrade layer dispatches incoming
calls labeled with the new version to the future-SO.

The upgrade manager then invokes the class upgrade’s scheduling function, which runs in
parallel with the current version’s software, determines when the node should upgrade, and
signals the upgrade manager at that time. The scheduling function may access a centralized
upgrade database to coordinate the upgrade schedule with other nodes and to enable human
operators to monitor and control upgrade progress.

In response to the scheduling signal, the upgrade manager shuts down the current node
software, causing it to persist its state. The upgrade manager then installs the new class
implementation and runs the transform function to convert the node’s persistent state to
the representation required by new version. The upgrade manager then discards the future-
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SO and installs the past-SO, which lets the node continue to support the previous version.
Finally, the upgrade manager starts the new version’s software, which recovers from the
newly-transformed persistent state.

4 Example: a document storage system

This section describes an example system and two upgrades to that system. Later sections
will refer back to this example.

The system consists servers that provide document storage and retrieval and clients that
interact with those servers. Servers are replicated for high-availability. Clients call methods
on servers and retry calls on replicas if calls on the primary fail. In version 1 of our system,
servers implement the following interface:

set(name, string) Sets the contents of the document named name to string.

get(name):string Returns the contents of the document named name, or throws
notfound if no contents have been set for that document.

Version 2 adds support for comments on documents and changes the semantics of get to
return a document and its comments together:

addComment(name, string) Adds a comment with the value string to the end
of a list of comments for the document named name, or throws notfound if
no contents have been set for that document.

set(name, string) (unchanged) Sets the contents of the document named name

to string.

get(name):string Returns the concatenation of the contents of the document
named name with the list of comments for that document, or throws notfound
if no contents have been set for that document.

This is an incompatible upgrade: version 2 changes the semantics of get, so a version 2
server’s response to get may confuse version 1 clients.

Version 3 fixes a semantic bug: since comments usually depend on the content of a
document, the comments for a document should be cleared when the document changes:

addComment(name, string) (unchanged) Adds a comment with the value string
to the end of a list of comments for the document named name, or throws
notfound if no contents have been set for that document.

set(name, string) Sets the contents of the document named name to string.
Clears the list of comments for that document.

get(name):string (unchanged) Returns the concatenation of the contents of
the document named name with the list of comments for that document, or
throws notfound if no contents have been set for that document.

This is also an incompatible upgrade: version 3 changes the semantics of set, so a version 3
server’s handling of set may confuse version 2 clients.
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5 Scheduling Functions

Scheduling functions (SFs) are procedures defined by the upgrader that tell nodes when to
upgrade (by signaling the nodes’ upgrade managers). Unlike existing systems that coordinate
upgrades centrally [4,21,39], SFs run on the nodes themselves. This lets SFs respond quickly
to changing environments, e.g., to avoid upgrading a replica if another one fails. This
approach can also reduce communication and so save energy in resource-constrained systems.

Here are examples of upgrade schedules and SFs:

Upgrade eagerly. The SF signals immediately. This schedule is useful to fix a critical bug.

Upgrade gradually. The SF decides whether to signal by periodically flipping a coin. This
schedule can avoid causing too many simultaneous node failures and recoveries, e.g., in a
peer-to-peer system.

Upgrade one-replica-at-a-time. The SF signals if its node has the lowest IP address among
its non-upgraded replicas. This schedule is useful for replica groups that tolerate only a few
failures [6, 41].

Upgrade after my servers upgrade. The SF signals once its node’s servers have upgraded.
This schedule prevents a client node from calling methods that its servers do not yet fully
support.

Upgrade all nodes of class C1 before nodes of class C2. The SF queries the upgrade database
to determine when to signal its UM. This schedule imposes a partial order on node upgrades.

Upgrade only nodes 1, 2, and 5. This schedule lets the upgrader test an upgrade on a few
nodes [39].

Many other schedules are possible, e.g., to avoid disturbing user activity or to avoid creating
blind spots in sensor networks.

In general, we cannot predict what parts of a node’s state an SF might use to implement
its policy. Instead, we provide SFs with read-only access to all of a node’s state via privi-
leged observers. Restricting SFs to read-only access prevents them from violating a node’s
specification by mutating its state.

An SF may also need to know the versions and classes of other nodes. The upgrade
database (UDB) provides a generic, central store for such information. Upgrade layers
(ULs) store their node’s class and version in the UDB after each upgrade. SFs can query the
UDB to implement globally-coordinated schedules, and the upgrader can query the UDB to
monitor upgrade progress. ULs also exchange this information with other ULs and cache it,
so SFs can query ULs for information about recently-contacted nodes. The upgrader can
define additional upgrade-specific tables in the UDB, e.g., a list of nodes that are authorized
to upgrade. The upgrader can modify these tables to control upgrade progress.

5.1 Correctness Guidelines

The main challenge in designing scheduling functions is ensuring that they behave correctly.
Since SFs control the rate at which nodes upgrade, they can affect a system’s availability,
fault-tolerance, and performance. We do not yet have formal correctness criteria for upgrade
schedules, but some intuitive guidelines are:
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1. All nodes affected by an upgrade must eventually upgrade. This means that all SFs
must eventually signal, so:

(a) SFs must not depend on node behavior that may be removed by an upgrade, such
as the behavior of other nodes. SFs can depend on the current behavior of the
node it runs on and on the upgrade infrastructure itself, although the upgrade
server and upgrade database may become unavailable due to failures.

(b) SFs must not deadlock. This means that wait-for schedules must be loop-free.
Schedules like “clients wait-for servers” and “replicas wait-for those with lower
node IDs” have this property.

2. While meeting the guideline 1, an upgrade should occur with minimal service disrup-
tion. This means:

(a) SFs should not cause nodes that provide redundancy for the same service to
upgrade at the same time.

(b) If node recovery after an upgrade requires state transfer from other nodes, then
SFs should limit the number of nodes that upgrade at the same time to avoid
causing excessive state transfer when they recover.

(c) If an upgrade adds a new service, then SFs should cause nodes that provide the
service to upgrade before nodes that use it. This is not necessary if non-upgraded
nodes can simulate the new service using a future-SO.

(d) If an upgrade removes an old service, then SFs should cause nodes that use the
service to upgrade before nodes that provide it. This is not necessary if upgraded
nodes can simulate the old service using a past-SO.

3. While meeting guidelines 1 and 2, an upgrade should occur as quickly as possible.

We plan to formalize these guidelines as correctness criteria and to investigate mechanisms
for verifying or enforcing them.

5.2 Examples

Our example system consists of two classes of nodes, clients and servers, and two upgrades,
version 2 and version 3. This means we must define a total of four scheduling functions: one
per class per version. Version 2 introduces a new feature (adding comments to documents), so
according to guideline 2c, we should upgrade servers before clients. Furthermore, according
to guideline 2a, we should avoid updating server replicas for the same set of documents at
the same time. Guideline 3 implies that clients should upgrade as soon as their servers have.
So, a good version 2 SF for servers is “upgrade replicas one-at-a-time,” and a good version 2
SF for clients is “upgrade after my servers have upgraded.”

Version 3 changes the semantics of an existing method (set clears the comments for a
document). This change cannot be characterized as “adding” or “removing” an existing fea-
ture, and simulation objects cannot mask the semantic change (as discussed in Section 6.3).
This suggests that no schedule can satisfy guideline 2 well, so the best SF is one that follows
guidelines 1 and 3, i.e., one that upgrades all the nodes as quickly as possible.
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6 Simulation Objects

Simulation objects (SOs) enable a system to provide service when it is in mixed mode, i.e.,
when its nodes are running different versions. Mixed mode arises because different nodes
upgrade at different times. For a mixed-mode system to provide service, it must be possible
for nodes running older versions to call methods on nodes running newer versions, and vice
versa. It is important to enable calls in both directions, because otherwise a slow upgrade
can partition upgraded nodes from non-upgraded ones (since calls between those nodes will
fail).

Several techniques exist for supporting mixed mode; before we detail the design of sim-
ulation objects, we discuss the alternatives.

6.1 Supporting Mixed Mode

The basic idea behind most existing techniques for supporting mixed mode is to allow each
node in the system to implement multiple types simultaneously—one for each version of the
system (hereafter, we will say that the node implements multiple versions). When one node
makes a method call on another, the caller assumes that the callee implements a particular
version. In reality, the assumed version may be just one of several versions that the callee
implements. This design simplifies software development by allowing implementors to write
their software as if every node in the system were running the same version.

It is important to understand what it means for a single node to implement several
versions simultaneously. On one hand, each version has its own specification and so may
behave differently than the other versions implemented by that node. On the other hand,
all the versions share the identity of a single node. We argue that for different versions to
share an identity, they must share state appropriately.

Consider the alternative: a node could implement multiple versions by by running in-
stances of each version side-by-side, each with its own state, as depicted in Figure 3(a).
For example, a node might implement two versions of a file system specification by run-
ning instances of both versions side-by-side. A caller that interacts only with one of the
two instances can store and retrieve files as usual. Two callers that interact with the same
instance can share files. But if two callers are running at different versions and so interact
with different instances, then they cannot share files. A single caller may lose access to its
own files, e.g., by storing files at one version, then upgrading, then attempting to fetch files
at the next version. Since each instance of the file system has its own state, the files that
the caller stored at one version are inaccessible at the next.

To allow multiple versions to share a single identity, the implementations of those versions
must share a single copy of the node’s state. A straightforward way to do this is to allow
them to share state directly, as illustrated in Figure 3(b). A common example of this model
is a relational database system that supports multiple views on a single set of tables. The
problem with this model is that different versions may have different expectations about
what values the state may have (representation invariants) and how the state may change
over time (history constraints). If different versions disagree on these expectations, then they
cannot safely share state. One might enforce safe sharing by requiring that each version obey
the invariants and constraints of all the versions on the node. This has two problems: first,
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one would have to re-implement each version each time a new version added an invariant or
constraint; second, the state may become so over-constrained that it is useless.

To ensure that a node provides at least some useful functionality, one can designate one
version as the primary version for the node. The node runs an instance of the primary
version’s implementation and so can support calls to that version perfectly. To support
other versions, the node runs handlers.

The simplest handler-based model is illustrated in Figure 3(c) and is similar to Skarra
and Zdonik’s schema versioning model for OODBs [40]. Calls to the primary version are
dispatched to an instance, and calls to other versions are dispatched to stateless error handlers
that can substitute results for those calls. This model works only if the error handlers can
return a sensible default for the calls they implement. This model is also limited in two ways:
first, handlers cannot implement behaviors that use (observe or mutate) the instance’s state,
and second, handlers cannot implement behaviors that use state outside that of the instance.

One can address the first limitation by allowing handlers to access the instance’s state
via its methods, as illustrated in Figure 3(d). This model lets handlers share state safely and
lets them support behaviors that can be defined in terms of the instance’s behavior. The
problem with this model is that to enable a node running any primary version to support
calls at any other version, one must define a handler for every pair of versions. This becomes
impractical as the number of versions increases.

One can keep the number of handlers manageable using handler chaining : each version
has just two handlers defined for it, one that calls methods of the next higher version and
another that calls methods of the next lower version. Thus, a chain of handlers can map a
call on any version to calls on the primary version. Instances of the handler chaining model
include Monk and Somerville’s update/backdate model for schema versions in OODBs [32]
and Senivongse’s “evolution transparency” model for distributed services [36].

The problem with handler chaining is that it may prevent handlers from implementing
certain behaviors: e.g., if versions 1 and 3 support a state-accessing behavior that version 2
does not, then a version 1 handler cannot implement that behavior since it cannot call
version 3 directly. This illustrates a general design tradeoff: by incorporating knowledge of
additional versions (thus, additional complexity), handlers may be able to better implement
their own versions’ specifications. This thesis will investigate this tradeoff further.

None of these previous models address the second limitation mentioned above: they do
not allow handlers to implement stateful behaviors that cannot be defined in terms of the
primary instance’s behavior. Our solution addresses this limitation by allowing handlers—
called simulation objects, or SOs—to implement calls both by accessing the state of the
instance via its methods and by accessing their own state, as illustrated in Figure 3(e).

Section 8 defines correctness criteria that restrict the ways in which simulation objects
can use their own state to ensure that the states of different versions appear consistent with
one another. These restrictions may prevent SOs from simulating certain behaviors, so some
calls made to SOs may fail. If a new version does not admit good simulation, the upgrader
may choose to use an eager upgrade schedule and avoid the use of SOs altogether—but the
upgrader must bear in mind that an eager schedule can disrupt service.
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Figure 3: Systems for supporting multiple versions of a type on a single node. Each node
(large box) supports calls at versions 1, 2, and 3. Arrows indicate the direction of method
calls. In (a), the node runs instances of each version. In (b), the node runs handlers for each
version that share state directly. In (c), (d), and (e), the node runs an instance of version 2
and has handlers for versions 1 and 3.
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6.2 Simulation Object Mechanics

An upgrader defines two simulation objects for each version, a past-SO and a future-SO. A
past-SO implements a previous version’s interface by calling methods on the object of the
next newer version; thus, a chain of past SOs can support many old versions. It is installed
when a node upgrades to a new version and is discarded when the infrastructure determines
(by consulting the UDB) that it is no longer needed.2

A future-SO implements a new version by calling methods on the previous version; like
past-SOs, future-SOs can be chained together to support several versions. A future-SO is
installed when a node learns of a new version and can be installed “on-the-fly” when a node
receives a call at a version newer than its own. A future-SO is removed when its node
upgrades to the new version.

At a given time, a node may contain a chain of past-SOs and a chain of future-SOs, as
depicted in Figure 2. An SO may call methods on the next object in the chain; it is unaware
of whether the next object or is the instance of the primary version or is another SO. An SO
may also call methods on other nodes at the SO’s own version, however, these calls may fail
if the receiving node cannot simulate them.

When a node receives a call, its upgrade layer dispatches the call to the object that
implements the version of that call, e.g., the upgrade layer dispatches a get call from a
version 1 caller to the version 1 object and dispatches a get call from a version 2 caller
to the version 2 object. The infrastructure ensures that such an object always exists by
dynamically installing future-SOs and by only discarding past-SOs for dead versions.

Simulation objects may contain state and may use this state to implement calls. SOs
must automatically recover their state after a node failure. Because they have state, SOs
must run on the receiving side of method calls. The alternative (running the SO on the
caller) would prevent callers from sharing the state of a single SO, since each caller would
access the state of their own SO.

Another consequence of allowing SOs to have state is that their state must be initialized
when the SOs are installed. Since past-SOs are installed when a node upgrades to a new
version, they initialize their state from the old version’s state, as depicted in Figure 4. Since
future-SOs may be installed at any time, they initialize their state without any input. Both
kinds of SOs may call methods on other nodes as part of initializing their state.

Notation SOv
p denotes a past-SO that simulates a version v type by calling methods on

a version v + 1 type (the specific types are generally clear from context). SO v
f denotes a

future-SO that simulates a version v type by calling methods on a version v − 1 type.

6.3 Examples

Since SOs are only required on the receiving end of method calls, we do not need to define
any SOs for the clients in our example system. For each of the two example upgrades, we
must define a past-SO and a future-SO for the servers, for a total of four SOs.

The first SO we consider is SO2

f , the future-SO that lets version 1 servers support ver-
sion 2 calls. Recall that version 2 adds the method addComment(name, string), changes

2Past-SOs might never be discarded by systems in which upgrades happen very slowly (e.g., peer-to-peer).
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the method get(name) to return a document and its comments, and leaves the method
set(name, string) unchanged. SO 2

f implements version 2’s set by calling version 1’s set

method. SO2

f implements addComment by storing a mapping from names to comments in

its own state (when it is installed, SO2

f initializes its state to the empty mapping). SO2

f

implements get by calling version 1’s get returning the concatenation of that result with
the comments it has stored for that document. This example illustrates how SOs can use
their state to implement more powerful behaviors than stateless handlers can.

The second SO we consider is SO1

p, the past-SO that lets version 2 servers support

version 1 calls. SO1

p implements version 1’s set by calling version 2’s set. SO 1

p implements
get by calling version 2’s get, stripping out any comments, and returning the uncommented
document. One might imagine avoiding having to strip out comments by storing documents
in SO1

p’s state and getting them from there, but this would miss the effects of calls to set at
version 2 and so would violate our requirement that the state of the node appear consistent
at different versions.

The third SO we consider is SO3

f , the future-SO that lets version 2 servers support
version 3 calls. Recall that version 3 changes set so that it clears the comments for the doc-
ument being set. One might hope to implement SO3

f by delegating all the version 3 methods
to version 2 and, upon a set, calling some version 2 method to clear the comments for that
document. Unfortunately, such a method may not be available. Even if it were, clearing the
comments violates the expectations of version 2 clients (since version 2 servers never remove
comments). But not clearing the comments violates the expectations of version 3 clients.
One might try having SO3

f remember the comments at the time of the last set then strip

out just those comments in get, but this would not work, since SO 3

f would miss calls to set

at version 2 and so might not remember the right comments. Even if this could work, it
would cause an inconsistency between the state observed by version 2 and version 3 clients.
Therefore, SO3

f may have to cause some calls to fail.

The fourth SO we consider is SO2

p, the past-SO that lets version 3 servers support ver-

sion 2 calls. SO2

p implements set and addComment by delegating to version 3. SO 2

p cannot
simply delegate get to version 3, since version 3 may clear the comments for a document,
which would violate the expectations of version 2 clients. One might try having SO 2

p remem-
ber all comments added for each document and return them in get, but this would miss calls
to addComment at version 3 and so might miss some comments. Even if this could work, it
would cause an inconsistency between the state observed by version 2 and version 3 clients.
Therefore, SO2

p may have to cause some calls to fail.
These examples illustrate two points. First, SOs are limited by the fact that they can only

see calls made at their own version. Second, some SO implementations can cause inconsistent
views of a node’s state at different versions. Section 8 elaborates on these points.

7 Transform Functions

Transform functions (TFs) are procedures defined by the upgrader to convert a node’s per-
sistent state from one version to the next. In previous systems [13,18,25], TFs converted the
old object into a new one whose representation (a.k.a. “rep”) reflected the state of the old
one at the moment the TF ran. Our system extends this approach to allow the TF to also
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Figure 4: State transforms when upgrading to version i+1. Squares represent the states of
instances; circles represent the states of simulation objects.

access the future-SO created for its version, as illustrated in Figure 4. The TF must then
produce a new-class object whose state reflects both the state of the old object and the state
of the future-SO. The upgrader can simplify the TF by making the future-SO stateless; then
the TF’s input is just the old version’s state.

TFs may also call methods of the new version on other nodes. However, a TF cannot
depend on these calls succeeding, since they may be simulated on the remote node and so
may fail due to simulation limitations.

Previous systems provide tools to generate TFs automatically [23, 28, 41]. We believe
such tools can be useful to generate simple TFs and SOs, but creating complex TFs and SOs
will require human assistance.

Notation TF v denotes a transform function that produces the state for a version v class
from the state of a version v − 1 class (the specific classes are generally clear from context).

7.1 Examples

Since we have not described any state for clients, we only consider the two TFs for the servers:
TF 2, which produces version 2 server state from version 1, and TF 3, which produces version 3
server state from version 2.

TF 2 generates state for the version 2 server from the state of the version 1 server and
the state of SO2

f . We define these states as:

• Version 1 state: set of 〈name, document〉

• SO2

f state: set of 〈name, list of comment〉

• Version 2 state: set of 〈name, document, list of comment〉

TF 2 generates the version 2 state by joining the version 1 state with SO 2

f ’s state on name.
TF 3 generates state for the version 3 server from the state of the version 2 server and

the state of SO3

f . Since SO3

f has no state, TF 3 only considers the state of the version 2
server. The version 2 server state is the same as that of the version 3 server, so TF 3 just
transforms the abstract value of this state from the version 2 representation to the version 3
representation [22]. For example, if version 2 stores its set using a list and version 3 uses a
hash table, TF 3 populates the hash table with each element from the list.
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8 Correctness Criteria

This section presents informal correctness criteria for simulation objects. The key question
we are trying to answer is, when must an SO cause a call to fail? We describe the criteria
in the context of a node running version i, Oi, with a single past-SO, SO i−1

p , and a single

future-SO, SO i+1

f . We assume atomicity, i.e., calls to a node run in some serial order.3

There can be multiple clients of a node, and these clients may be running different
versions. This means that calls to different versions can be interleaved. For example, a
call to Oi (made by a client at version i) may be followed by a call to SO i+1

f (made by a

client at version i + 1), which may be followed by a call to SO i−1

p (made by a client running
version i − 1), and so on. We want this interleaving to make sense.

Also, clients running different versions may communicate about the state of a node. A
client at version i may use (observe or modify) the state of the node via Oi, and a client at
version i+1 may use the state of the node via SO i+1

f , and the two clients may communicate
about the state of the node out-of-band. We want the state of the node to appear consistent
to the two clients.

We assume that each version has a specification that describes the behavior of its objects.
In addition we require that version i + 1’s specification explain how version i + 1 is related
to the previous version i. This explanation can be given in the form of a mapping function,
MF i+1, that maps the abstract state of Oi to that of Oi+1. An abstraction function maps
an object’s concrete state to its abstract state. Figure 5 depicts the relationship between
transform functions, abstraction functions, and mapping functions.

We start with the obvious criteria: SO i+1

f , Oi, and SO i−1

p must each satisfy their version’s
specification. In the case of Oi we expect “full compliance,” but in the case of the SOs, calls
may fail when necessary, as defined in the following subsections.

3Our infrastructure can guarantee atomicity näıvely by locking the entire node each time it receives a
call. This design is inefficient because it does not allow calls to execute concurrently even when this would
be safe. Improving this design is future work.
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8.1 Future SOs

This section discusses the correctness criteria for SO i+1

f . We need to understand what each

method of SO i+1

f is allowed to do. The choices are: fail, access/modify the state of Oi, or

access/modify the state of SO i+1

f .
When going from version i to i + 1, some state of Oi is reflected in Oi+1, and some is

forgotten. We can view the abstract state of Oi as having two parts, a dependent part Di and
an independent part Ii, and the abstract state of Oi+1 as having two parts, Di+1 and Ii+1.
These parts are defined by MF i+1: MF i+1 ignores Ii, uses Di to produce Di+1, and trivially
initializes Ii+1.

Now we can describe the criteria for SO i+1

f . A call to SO i+1

f uses (observes or modifies)

Di+1, Ii+1, or both. Calls that use only Ii+1 execute directly on SO i+1

f ’s rep. However, calls
that use Di+1 must access Oi, or else clients at versions i and i + 1 may see inconsistencies.

Consider our example upgrade from version 1 servers to version 2 servers. The abstract
state of a version 1 server is a set of 〈name, document〉 pairs. The abstract state of a version 2
server is a set of 〈name, document, comments〉 tuples, where comments is a list of comments.
So, the mapping function is:

MF 2 = λset : {〈name, document〉}.{〈n, d, [ ]〉|〈n, d〉 ∈ set}

In this example, D1 = D2 = the set of 〈name, document〉 pairs, and I2 = the set of 〈name,
comments〉 pairs. Calls to SO2

f to add or view comments can be implemented by access-

ing SO2

f ’s rep, where information about comments is stored, but calls that access the docu-
ments must be delegated to O1. This way we ensure, e.g., that a modification of a document
made via a call to SO2

f will be observed by later uses of O1.
Thus we have the following condition:

1. Calls to SO i+1

f that modify or observe Di+1 must be implemented by calling methods
of Oi.

This condition ensures that modifications made via calls to SO i+1

f are visible to users of Oi,

and that modifications made via calls to Oi are visible to users of SO i+1

f .
However, there is a problem here: sometimes it is not possible to implement calls on Di+1

by delegating to Oi. For example, consider a version 2 server, O2, that supports version 3
using a future-SO, SO3

f . MF 3 maps the abstract state of version 2 directly to version 3: D3

= D2 = the set of 〈name, document, comments〉 tuples, so SO 3

f must delegate all its methods
to O2 (note that this D2 is different from the D2 defined by MF 2). Version 3’s specification
requires that SO3

f clear the comments for a document when the document is set, but O2

provides no methods to do this. SO3

f could make it appear as though the comments were
removed by keeping track of removed comments in its own rep and “subtracting” those
comments when calls observe D3, but this creates an inconsistency between the states visible
to version 2 and version 3 clients.

To prevent such inconsistencies, we require:

2. Calls to SO i+1

f that use Di+1 but that cannot be implemented by calling methods of Oi

must fail.
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So calls to set on SO3

f must fail. SO3

f can still implement get and addComment by calling O2.

These conditions disallow caching of mutable Oi state in SO i+1

f . Caching of immutable
state is allowed since no inconsistency is possible.

8.2 Past SOs

When Oi upgrades to Oi+1, a past-SO, SO i
p, is created to handle calls to version i. We can

apply all the above criteria to SO i
p by substituting SO i

p for SO i+1

f , Di for Di+1, and Oi+1

for Oi. In addition, SO i
p must initialize its state from Ii, so that calls to SO i

p that access Ii

reflect the effects of previous calls to Oi.
Recall that D1 = D2 = the set of 〈name, document〉 pairs, so SO 1

p must implement get

and set by delegating to O2. Version 1’s specification says get returns just the requested
document, so SO1

p must strip the comments off any document returned by O2. This does
not create an inconsistency between the states observed by version 1 and version 2 clients,
since version 1 clients no nothing about comments.

Similarly, SO2

p must delegate all its methods to O3. Version 2’s specification says com-

ments are never removed, but version 3 allows O3 to remove them. Therefore, SO2

p cannot

implement get by delegating to O3, so it must cause get to fail. If the node chains SO 1

p to

SO2

p, then since SO1

p delegates get to SO2

p, SO1

p’s get will also fail.

8.3 Transform Functions

TF i+1 produces a rep for Oi+1 from that of Oi, i.e., it is the concrete analogue of MF i+1.
Where TF i+1 differs is in how it produces the concrete analogue of Ii+1: rather than initial-
izing it trivially (as MF i+1 does), TF i+1 initializes Ii+1 from the rep of SO i+1

f . This ensures

that calls to Oi+1 that access Ii+1 reflect the effects of previous calls to SO i+1

f .

8.4 Limitations

Our correctness criteria only consider the relationship between successive versions and so
cannot capture the relationship between two versions that are separated by one or more
versions. For example, suppose versions 1 and 3 support getValue() and setValue(), but
version 2 does not. This might happen if the upgrader mistakenly removes a feature then
restores it in a later version. Ideally, modifications made via setValue() at version 1 would
be visible via getValue() at version 3, and vice versa. But since SOs are only allowed to
access the next successive version, they cannot implement these semantics.

We might fix this by extending our criteria to consider more than two versions at a time
and by allowing SOs to access multiple previous versions. However, defining SOs in terms of
multiple versions complicates reasoning about their correctness. This thesis will investigate
whether these extensions can be practical.

Another limitation is that SOs only see calls made at their own version. This means
SOs cannot implement behaviors that require action every time some method is called, e.g.,
logging calls for auditing or clearing comments for a document every time it is set. Removing
this limitation, however, would complicate development of SOs, since developers would have
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to reason about the effects of every method from every version on the state of the SO. This
thesis will investigate whether there are simpler ways of working around this limitation.

9 Related Work

This section reviews related work in the context of our approach. For a more general treat-
ment, see our annotated bibliography [9].

9.1 Upgrade Systems

Utilities like rsync [42] and package installers [1, 5, 7] automatically upgrade nodes over a
network. Their upgrade scheduling takes two basic factors into account: the needs of the
application (e.g., is an urgent security update pending?) and the needs of the user (e.g., is
the user idle?). This suffices for many user applications, but does nothing to ensure that the
system as a whole provides service.

Centrally-administered systems [4, 21, 39] do nothing special to handle upgrades that
cause incompatibilities between versions. They enable centralized upgrade scheduling, which
is useful for testing an upgrade on a few nodes or controlling the rate at which nodes upgrade,
e.g., to manage bandwidth consumption.

Google [19] upgrades entire data centers at once and provides service by redirecting
clients via DNS to other, redundant data centers (that are not upgrading). Since all the
nodes in a data center upgrade together, nodes running different versions never communicate.
Therefore, upgrades can change the protocols used within data centers but not those between
data centers.

Reconfigurable distributed systems enable the replacement of object implementations in
distributed object systems, such as Argus [13], Conic [27], Polylith [25], CORBA [11, 12],
and Java [35]. They also let an administrator add and remove objects and change the links
between them. These systems require manual upgrade scheduling and assume compatibility
between versions.

9.2 State Transformation

Many upgrade systems allow the transformation of state between versions [13, 17, 18, 20, 23,
25,41]. Most base the correctness of their transform functions on Herlihy and Liskov’s value
transmission technique for ADTs [22]. Some also provide tools that automatically generate
transforms from the old and new version of an object’s definition [23, 28, 41].

Bloom [13, 14] argues that value transmission is insufficient: an upgrade must preserve
the history of operations on an object. For example, the current value of a random number
generator captures the history of previous values yielded by the generator, so an upgrade
must preserve this history and must not repeat any previous values.
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9.3 Upgrade Scheduling

Existing work supports only simple kinds of upgrade scheduling, such as manual schedules,
rate-controlled schedules [39], one-at-a-time upgrades of replicas [41], or opportunistic sched-
ules that wait until a module quiesces [18]. Our work supports all these schedules and more
by deploying upgrader-defined scheduling functions on nodes.

9.4 Mixed Mode Systems

Previous work has proposed using adapters to enable mixed mode systems to provide service,
the most thorough discussion of which is Senivongse’s [36]. Senivongse proposes several ideas
that appear in our design, including the use of adapters to support new behavior on non-
upgraded nodes. However, Senivongse does not discuss how these adapters correctly simulate
one version’s specification on another’s, how they might be deployed, or how to manage their
state.

PODUS [18] supports interprocedures that translate calls made to the old version of a
procedure into calls to the new version. The Eternal system [41] supports wrappers that
let nodes upgrade at different times by translating calls between them. However, neither
of these projects uses simulation to support future behavior or discusses how wrappers can
correctly implement one version’s specification using another’s.

Object-oriented databases that use schema versioning may contain contain instances of
different versions of a type. Furthermore, they provide ways for an instance to handle accesses
from programs using a different (older or newer) version of its type. The Encore system [40]
wraps each instance with a version set interface (VSI) that can accept any method call for any
version of the instance’s type. If the instance cannot satisfy a call directly, handlers in the
VSI can substitute a response. Unfortunately, the number of handlers grows quadratically
in the number of versions: each time a new version is defined, new handlers must be defined
for each old version. Monk and Sommerville’s system [32] uses “update” and “backdate”
functions to convert calls from any version to the version of the instance. These functions
can chain together, so new version requires only two new functions.

Federated distributed systems [16,31,34,37] address similar challenges as those posed by
mixed mode systems. Federated systems must transform calls or data as they pass from
one domain of the system to another, e.g., a system may transform a monetary value from
one currency to another as it is transferred between different countries. Elements of our
techniques for handling mixed mode systems may also apply to federated systems.

9.5 Dynamic Updating

Dynamic updating [17,18,20,23,24,30] enables nodes to upgrade with minimal service inter-
ruption. This is complementary to our approach and can reduce downtime during upgrades.

10 Thesis Schedule

In her keynote address at SOSP 2001, Prof. Liskov outlined our techniques for supporting
upgrades in distributed systems [29]. In Summer 2002, we reviewed the literature on software
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upgrade systems [9]. In Fall 2002, we did paper studies of several scenarios using our model
[8]. In January 2003, we refined our design and submitted a position paper to the HotOS 2003
workshop, which has since been accepted [10]. The roadmap for the rest of the thesis is:

Spring 2003 Formalize the correctness criteria for simulation objects, transform functions,
and scheduling functions. (This thesis will not attempt to generate any of these objects
or check their correctness automatically.) Prototype the infrastructure using Sun RPC.

Summer 2003 Complete the prototype and evaluate basic upgrade scenarios (“document
server” and “new DHash block type”). Deploy on PlanetLab [33] for wide-area evalu-
ation.4 Revise the design as needed.

Fall 2003 Finalize the design and implementation. Evaluate upgrade scenarios (the two
above plus “NFS3 to NFS4” and a simulated sensor net example). If time permits,
add support for message-passing and other RPC or RMI protocols.

Winter and Spring 2004 Write thesis. If time permits, submit a paper on the architec-
ture to OSDI.

11 Required Facilities

For development and local evaluation of our prototype, the Programming Methodology
Group machines and software will suffice. For wide-area evaluation, we plan to use Planet-
Lab, which is currently free for academic use.

12 Future Work

We believe that the design sketched above is a good starting point for supporting automatic
upgrades for distributed systems, but much work remains to be done. Here are some of the
more interesting open problems that we hope to address:

• Formalize correctness criteria for scheduling functions, simulation objects, and trans-
form functions.

• Provide support for nodes that communicate by message passing rather than by RPC
or RMI.

• Provide support for multiple objects per node.

• Investigate ways to run transform functions lazily, so that a node can upgrade to the
next version quickly and add additional information to its representation as needed.

• Investigate ways to recover from upgrades that introduce bugs. One possibility is to
use a later upgrade to fix an earlier, broken one. This requires a way to undo an
upgrade, fix it, then somehow “replay” the undone operations [15].

4PlanetLab developer Brent Chun is interested in using our methodology to upgrade PlanetLab services
and possibly even PlanetLab’s own infrastructure. A cooperative effort may make sense here.
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• Investigate ways to allow the upgrade infrastructure itself to be upgraded.

We are currently implementing a prototype of our upgrade infrastructure for RPC-based
systems [?]. We plan to use the prototype to evaluate upgrades for several systems, including
Chord and NFS.
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