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Abstract

This paper describes an asynchronous state-machine replication
system that tolerates Byzantine faults, which can be caused
by malicious attacks or software errors. Our system is the
first to recover Byzantine-faulty replicas proactively and it
performs well because it uses symmetric rather than public-
key cryptography for authentication. The recovery mechanism
allows us to tolerate any number of faults over the lifetime of
the system provided fewer than 1 3 of the replicas become
faulty within a window of vulnerability that is small under
normal conditions. The window may increase under a denial-
of-service attack but we can detect and respond to such
attacks. The paper presents results of experiments showing
that overall performance is good and that even a small window
of vulnerability has little impact on service latency.

1 Introduction

This paper describes a new system for asynchronous
state-machine replication [17, 28] that offers both in-
tegrity and high availability in the presence of Byzan-
tine faults. Our system is interesting for two reasons:
it improves security by recovering replicas proactively,
and it is based on symmetric cryptography, which allows
it to perform well so that it can be used in practice to
implement real services.

Our system continues to function correctly even when
some replicas are compromised by an attacker; this
is worthwhile because the growing reliance on online
information services makes malicious attacks more likely
and their consequences more serious. The system also
survives nondeterministic software bugs and software
bugs due to aging (e.g., memory leaks). Our approach
improves on the usual technique of rebooting the system
because it refreshes state automatically, staggers recovery
so that individual replicas are highly unlikely to fail
simultaneously, and has little impact on overall system
performance. Section 4.7 discusses the types of faults
tolerated by the system in more detail.

Because of recovery, our system can tolerate any
number of faults over the lifetime of the system, provided
fewer than 1 3 of the replicas become faulty within
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a window of vulnerability. The best that could be
guaranteed previously was correct behavior if fewer
than 1 3 of the replicas failed during the lifetime of a
system. Our previous work [6] guaranteed this and other
systems [26, 16] provided weaker guarantees. Limiting
the number of failures that can occur in a finite window
is a synchrony assumption but such an assumption is
unavoidable: since Byzantine-faulty replicas can discard
the service state, we must bound the number of failures
that can occur before recovery completes. But we
require no synchrony assumptions to match the guarantee
provided by previous systems. We compare our approach
with other work in Section 7.

The window of vulnerability can be small (e.g., a
few minutes) under normal conditions. Additionally, our
algorithm provides detection of denial-of-service attacks
aimed at increasing the window: replicas can time how
long a recovery takes and alert their administrator if it
exceeds some pre-established bound. Therefore, integrity
can be preserved even when there is a denial-of-service
attack.

The paper describes a number of new techniques
needed to solve the problems that arise when providing
recovery from Byzantine faults:
Proactive recovery. A Byzantine-faulty replica may
appear to behave properly even when broken; therefore
recovery must be proactive to prevent an attacker from
compromising the service by corrupting 1 3 of the
replicas without being detected. Our algorithm recovers
replicas periodically independent of any failure detection
mechanism. However a recovering replica may not
be faulty and recovery must not cause it to become
faulty, since otherwise the number of faulty replicas could
exceed the bound required to provide safety. In fact, we
need to allow the replica to continue participating in the
request processing protocol while it is recovering, since
this is sometimes required for it to complete the recovery.
Fresh messages. An attacker must be prevented from
impersonating a replica that was faulty after it recovers.
This can happen if the attacker learns the keys used to
authenticate messages. Furthermore even if messages
are signed using a secure cryptographic co-processor,
an attacker might be able to authenticate bad messages
while it controls a faulty replica; these messages could
be replayed later to compromise safety. To solve this
problem, we define a notion of authentication freshness



and replicas reject messages that are not fresh. However,
this leads to a further problem, since replicas may be
unable to prove to a third party that some message they
received is authentic (because it may no longer be fresh).
All previous state-machine replication algorithms [26,
16], including the one we described in [6], relied on such
proofs. Our current algorithm does not, and this has
the added advantage of enabling the use of symmetric
cryptography for authentication of all protocol messages.
This eliminates most use of public-key cryptography, the
major performance bottleneck in previous systems.
Efficient state transfer. State transfer is harder in the
presence of Byzantine faults and efficiency is crucial to
enable frequent recovery with little impact on perfor-
mance. To bring a recovering replica up to date, the state
transfer mechanism checks the local copy of the state to
determine which portions are both up-to-date and not cor-
rupt. Then, it must ensure that any missing state it obtains
from other replicas is correct. We have developed an effi-
cient hierarchical state transfer mechanism based on hash
chaining and incremental cryptography [1]; the mecha-
nism tolerates Byzantine-faults and state modifications
while transfers are in progress.

Our algorithm has been implemented as a generic
program library with a simple interface. This library
can be used to provide Byzantine-fault-tolerant versions
of different services. The paper describes experiments
that compare the performance of a replicated NFS imple-
mented using the library with an unreplicated NFS. The
results show that the performance of the replicated sys-
tem without recovery is close to the performance of the
unreplicated system. They also show that it is possible
to recover replicas frequently to achieve a small window
of vulnerability in the normal case (2 to 10 minutes) with
little impact on service latency.

The rest of the paper is organized as follows. Sec-
tion 2 presents our system model and lists our assump-
tions; Section 3 states the properties provided by our al-
gorithm; and Section 4 describes the algorithm. Our im-
plementation is described in Section 5 and some perfor-
mance experiments are presented in Section 6. Section 7
discusses related work. Our conclusions are presented in
Section 8.

2 System Model and Assumptions

We assume an asynchronous distributed system where
nodes are connected by a network. The network may
fail to deliver messages, delay them, duplicate them, or
deliver them out of order.

We use a Byzantine failure model, i.e., faulty nodes
may behave arbitrarily, subject only to the restrictions
mentioned below. We allow for a very strong adversary
that can coordinate faulty nodes, delay communication,
inject messages into the network,or delay correct nodes in
order to cause the most damage to the replicated service.
We do assume that the adversary cannot delay correct
nodes indefinitely.

We use cryptographic techniques to establish session
keys, authenticate messages, and produce digests. We use

the SFS [21] implementation of a Rabin-Williams public-
key cryptosystem with a 1024-bit modulus to establish
128-bit session keys. All messages are then authenti-
cated using message authentication codes (MACs) [2]
computed using these keys. Message digests are com-
puted using MD5 [27].

We assume that the adversary (and the faulty nodes it
controls) is computationally bound so that (with very high
probability) it is unable to subvert these cryptographic
techniques. For example, the adversary cannot forge
signatures or MACs without knowing the corresponding
keys, or find two messages with the same digest. The
cryptographic techniques we use are thought to have these
properties.

Previous Byzantine-fault tolerant state-machine repli-
cation systems [6, 26, 16] also rely on the assumptions
described above. We require no additional assumptions
to match the guarantees provided by these systems, i.e.,
to provide safety if less than 1 3 of the replicas become
faulty during the lifetime of the system. To tolerate more
faults we need additional assumptions: we must mutu-
ally authenticate a faulty replica that recovers to the other
replicas, and we need a reliable mechanism to trigger pe-
riodic recoveries. These could be achieved by involving
system administrators in the recovery process, but such
an approach is impractical given our goal of recovering
replicas frequently. Instead, we rely on the following
assumptions:
Secure Cryptography. Each replica has a secure crypto-
graphic co-processor, e.g., a Dallas Semiconductors iBut-
ton, or the security chip in the motherboard of the IBM
PC 300PL. The co-processor stores the replica’s private
key, and can sign and decrypt messages without exposing
this key. It also contains a true random number generator,
e.g., based on thermal noise, and a counter that never goes
backwards. This enables it to append random numbers
or the counter to messages it signs.
Read-Only Memory. Each replica stores the public keys
for other replicas in some memory that survives failures
without being corrupted (provided the attacker does not
have physical access to the machine). This memory could
be a portion of the flash BIOS. Most motherboards can
be configured such that it is necessary to have physical
access to the machine to modify the BIOS.
Watchdog Timer. Each replica has a watchdog timer
that periodically interrupts processing and hands control
to a recovery monitor, which is stored in the read-
only memory. For this mechanism to be effective, an
attacker should be unable to change the rate of watchdog
interrupts without physical access to the machine. Some
motherboards and extension cards offer the watchdog
timer functionality but allow the timer to be reset without
physical access to the machine. However, this is easy to
fix by preventing write access to control registers unless
some jumper switch is closed.

These assumptions are likely to hold when the attacker
does not have physical access to the replicas, which we
expect to be the common case. When they fail we can
fall back on system administrators to perform recovery.



Note that all previous proactive security algo-
rithms [24, 13, 14, 3, 10] assume the entire program run
by a replica is in read-only memory so that it cannot be
modified by an attacker. Most also assume that there are
authenticated channels between the replicas that continue
to work even after a replica recovers from a compromise.
These assumptions would be sufficient to implement our
algorithm but they are less likely to hold in practice.
We only require a small monitor in read-only memory
and use the secure co-processors to establish new session
keys between the replicas after a recovery.

The only work on proactive security that does not
assume authenticated channels is [3], but the best that
a replica can do when its private key is compromised
in their system is alert an administrator. Our secure
cryptography assumption enables automatic recovery
from most failures, and secure co-processors with the
properties we require are now readily available, e.g., IBM
is selling PCs with a cryptographic co-processor in the
motherboard at essentially no added cost.

We also assume clients have a secure co-processor;
this simplifies the key exchange protocol between clients
and replicas but it could be avoided by adding an extra
round to this protocol.

3 Algorithm Properties

Our algorithm is a form of state machine replication [17,
28]: the service is modeled as a state machine that is
replicated across different nodes in a distributed system.
The algorithm can be used to implement any replicated
service with a state and some operations. The operations
are not restricted to simple reads and writes; they can
perform arbitrary computations.

The service is implemented by a set of replicas
and each replica is identified using an integer in

0 1 . Each replica maintains a copy of the
service state and implements the service operations. For
simplicity, we assume 3 1 where is the
maximum number of replicas that may be faulty. Service
clients and replicas are non-faulty if they follow the
algorithm and if no attacker can impersonate them (e.g.,
by forging their MACs).

Like all state machine replication techniques, we
impose two requirements on replicas: they must start
in the same state, and they must be deterministic (i.e., the
execution of an operation in a given state and with a given
set of arguments must always produce the same result).
We can handle some common forms of non-determinism
using the technique we described in [6].

Our algorithm ensures safety for an execution pro-
vided at most replicas become faulty within a window
of vulnerability of size . Safety means that the repli-
cated service satisfies linearizability [12, 5]: it behaves
like a centralized implementation that executes opera-
tions atomically one at a time. Our algorithm provides
safety regardless of how many faulty clients are using
the service (even if they collude with faulty replicas).

We will discuss the window of vulnerability further in
Section 4.7.

The algorithm also guarantees liveness: non-faulty
clients eventually receive replies to their requests pro-
vided (1) at most replicas become faulty within the
window of vulnerability ; and (2) denial-of-service at-
tacks do not last forever, i.e., there is some unknown point
in the execution after which all messages are delivered
(possibly after being retransmitted) within some constant
time , or all non-faulty clients have received replies to
their requests. Here, is a constant that depends on the
timeout values used by the algorithm to refresh keys, and
trigger view-changes and recoveries.

4 Algorithm

The algorithm works as follows. Clients send requests
to execute operations to the replicas and all non-faulty
replicas execute the same operations in the same order.
Since replicas are deterministic and start in the same state,
all non-faulty replicas send replies with identical results
for each operation. The client waits for 1 replies from
different replicas with the same result. Since at least one
of these replicas is not faulty, this is the correct result of
the operation.

The hard problem is guaranteeing that all non-faulty
replicas agree on a total order for the execution of
requests despite failures. We use a primary-backup
mechanism to achieve this. In such a mechanism, replicas
move through a succession of configurations called views.
In a view one replica is the primary and the others are
backups. We choose the primary of a view to be replica

such that mod , where is the view number
and views are numbered consecutively.

The primary picks the ordering for execution of
operations requested by clients. It does this by assigning
a sequence number to each request. But the primary may
be faulty. Therefore, the backups trigger view changes
when it appears that the primary has failed to select a new
primary. Viewstamped Replication [23] and Paxos [18]
use a similar approach to tolerate benign faults.

To tolerate Byzantine faults, every step taken by a
node in our system is based on obtaining a certificate. A
certificate is a set of messages certifying some statement
is correct and coming from different replicas. An example
of a statement is: “the result of the operation requested
by a client is ”.

The size of the set of messages in a certificate is either
1 or 2 1, depending on the type of statement and

step being taken. The correctness of our system depends
on a certificate never containing more than messages
sent by faulty replicas. A certificate of size 1 is
sufficient to prove that the statement is correct because it
contains at least one message from a non-faulty replica.
A certificate of size 2 1 ensures that it will also be
possible to convince other replicas of the validity of the
statement even when replicas are faulty.

Our earlier algorithm [6] used the same basic ideas
but it did not provide recovery. Recovery complicates the



construction of certificates; if a replica collects messages
for a certificate over a sufficiently long period of time
it can end up with more than messages from faulty
replicas. We avoid this problem by introducing a notion
of freshness; replicas reject messages that are not fresh.
But this raises another problem: the view change protocol
in [6] relied on the exchange of certificates between
replicas and this may be impossible because some of
the messages in a certificate may no longer be fresh.
Section 4.5 describes a new view change protocol that
solves this problem and also eliminates the need for
expensive public-key cryptography.

To provide liveness with the new protocol, a replica
must be able to fetch missing state that may be held by
a single correct replica whose identity is not known. In
this case, voting cannot be used to ensure correctness of
the data being fetched and it is important to prevent a
faulty replica from causing the transfer of unnecessary
or corrupt data. Section 4.6 describes a mechanism to
obtain missing messages and state that addresses these
issues and that is efficient to enable frequent recoveries.

The sections below describe our algorithm. Sec-
tions 4.2 and 4.3, which explain normal-case request pro-
cessing, are similar to what appeared in [6]. They are
presented here for completeness and to highlight some
subtle changes.

4.1 Message Authentication

We use MACs to authenticate all messages. There is a
pair of session keys for each pair of replicas and :
is used to compute MACs for messages sent from to ,
and is used for messages sent from to .

Some messages in the protocol contain a single MAC
computed using UMAC32 [2]; we denote such a message
as , where is the sender is the receiver and the
MAC is computed using . Other messages contain
authenticators; we denote such a message as ,
where is the sender. An authenticator is a vector of
MACs, one per replica ( ), where the MAC in
entry is computed using . The receiver of a message
verifies its authenticity by checking the corresponding
MAC in the authenticator.

Replicas and clients refresh the session keys used
to send messages to them by sending new-key messages
periodically (e.g., every minute). The same mechanism is
used to establish the initial session keys. The message has
the form NEW-KEY . The message
is signed by the secure co-processor (using the replica’s
private key) and is the value of its counter; the counter
is incremented by the co-processor and appended to
the message every time it generates a signature. (This
prevents suppress-replay attacks [11].) Each is the
key replica should use to authenticate messages it sends
to in the future; is encrypted by ’s public key, so
that only can read it. Replicas use timestamp to detect
spurious new-key messages: must be larger than the
timestamp of the last new-key message received from .

Each replica shares a single secret key with each
client; this key is used for communication in both

directions. The key is refreshed by the client periodically,
using the new-key message. If a client neglects to do this
within some system-defined period, a replica discards
its current key for that client, which forces the client to
refresh the key.

When a replica or client sends a new-key message,
it discards all messages in its log that are not part of a
complete certificate and it rejects any messages it receives
in the future that are authenticated with old keys. This
ensures that correct nodes only accept certificates with
equally fresh messages, i.e., messages authenticated with
keys created in the same refreshment phase.

4.2 Processing Requests

We use a three-phase protocol to atomically multicast
requests to the replicas. The three phases are pre-prepare,
prepare, and commit. The pre-prepare and prepare phases
are used to totally order requests sent in the same view
even when the primary, which proposes the ordering
of requests, is faulty. The prepare and commit phases
are used to ensure that requests that commit are totally
ordered across views. Figure 1 shows the operation of
the algorithm in the normal case of no primary faults.

Client

Replica 0

Replica 1

Replica 2

Replica 3 X

request pre-prepare prepare commit reply

pre-prepared prepared committedunknown

Figure 1: Normal Case Operation. Replica 0 is the
primary, and replica 3 is faulty

Each replica stores the service state, a log containing
information about requests, and an integer denoting the
replica’s current view. The log records information
about the request associated with each sequence number,
including its status; the possibilities are: unknown (the
initial status), pre-prepared, prepared, and committed.
Figure 1 also shows the evolution of the request status as
the protocol progresses. We describe how to truncate the
log in Section 4.3.

A client requests the execution of state machine
operation by sending a REQUEST message to
the primary. Timestamp is used to ensure exactly-once
semantics for the execution of client requests [6].

When the primary receives a request from a client,
it assigns a sequence number to . Then it multicasts a
pre-prepare message with the assignment to the backups,
and marks as pre-prepared with sequence number .
The message has the form PRE-PREPARE ,
where indicates the view in which the message is being
sent, and is ’s digest.

Like pre-prepares, the prepare and commit messages



sent in the other phases also contain and . A replica
only accepts one of these messages if it is in view ; it can
verify the authenticity of the message; and is between
a low water mark, , and a high water mark, . The
last condition is necessary to enable garbage collection
and prevent a faulty primary from exhausting the space
of sequence numbers by selecting a very large one. We
discuss how and advance in Section 4.3.

A backup accepts the pre-prepare message provided
(in addition to the conditions above): it has not accepted a
pre-prepare for view and sequence number containing
a different digest; it can verify the authenticity of ; and

is ’s digest. If accepts the pre-prepare, it marks
as pre-prepared with sequence number , and enters the
prepare phase by multicasting a PREPARE
message to all other replicas.

When replica has accepted a certificate with a
pre-prepare message and 2 prepare messages for the
same sequence number and digest (each from a
different replica including itself), it marks the message as
prepared. The protocol guarantees that other non-faulty
replicas will either prepare the same request or will not
prepare any request with sequence number in view .

Replica multicasts COMMIT saying it
prepared the request. This starts the commit phase.
When a replica has accepted a certificate with 2 1
commit messages for the same sequence number and
digest from different replicas (including itself), it marks
the request as committed. The protocol guarantees that
the request is prepared with sequence number in view

at 1 or more non-faulty replicas. This ensures
information about committed requests is propagated to
new views.

Replica executes the operation requested by the
client when is committed with sequence number and
the replica has executed all requests with lower sequence
numbers. This ensures that all non-faulty replicas execute
requests in the same order as required to provide safety.

After executing the requested operation, replicas
send a reply to the client . The reply has the form
REPLY where is the timestamp of the

corresponding request, is the replica number, and is the
result of executing the requested operation. This message
includes the current view number so that clients can
track the current primary.

The client waits for a certificate with 1 replies
from different replicas and with the same and , before
accepting the result . This certificate ensures that the
result is valid. If the client does not receive replies soon
enough, it broadcasts the request to all replicas. If the
request is not executed, the primary will eventually be
suspected to be faulty by enough replicas to cause a view
change and select a new primary.

4.3 Garbage Collection

Replicas can discard entries from their log once the
corresponding requests have been executed by at least

1 non-faulty replicas; this many replicas are needed

to ensure that the execution of that request will be known
after a view change.

We can determine this condition by extra communi-
cation, but to reduce cost we do the communication only
when a request with a sequence number divisible by some
constant (e.g., 128) is executed. We will refer to
the states produced by the execution of these requests as
checkpoints.

When replica produces a checkpoint, it multicasts
a CHECKPOINT message to the other replicas,
where is the sequence number of the last request whose
execution is reflected in the state and is the digest of
the state. A replica maintains several logical copies of
the service state: the current state and some previous
checkpoints. Section 4.6 describes how we manage
checkpoints efficiently.

Each replica waits until it has a certificate containing
2 1 valid checkpoint messages for sequence number
with the same digest sent by different replicas (including
possibly its own message). At this point, the checkpoint
is said to be stable and the replica discards all entries in
its log with sequence numbers less than or equal to ; it
also discards all earlier checkpoints.

The checkpoint protocol is used to advance the low
and high water marks (which limit what messages will
be added to the log). The low-water mark is equal to
the sequence number of the last stable checkpoint and the
high water mark is , where is the log size.
The log size is obtained by multiplying by a small
constant factor (e.g., 2) that is big enough so that replicas
do not stall waiting for a checkpoint to become stable.

4.4 Recovery

The recovery protocol makes faulty replicas behave
correctly again to allow the system to tolerate more than

faults over its lifetime. To achieve this, the protocol
ensures that after a replica recovers it is running correct
code; it cannot be impersonated by an attacker; and it has
correct, up-to-date state.
Reboot. Recovery is proactive — it starts periodically
when the watchdog timer goes off. The recovery monitor
saves the replica’s state (the log and the service state)
to disk. Then it reboots the system with correct code
and restarts the replica from the saved state. The
correctness of the operating system and service code is
ensured by storing them in a read-only medium (e.g., the
Seagate Cheetah 18LP disk can be write protected by
physically closing a jumper switch). Rebooting restores
the operating system data structures and removes any
Trojan horses.

After this point, the replica’s code is correct and it
did not lose its state. The replica must retain its state
and use it to process requests even while it is recovering.
This is vital to ensure both safety and liveness in the
common case when the recovering replica is not faulty;
otherwise, recovery could cause the 1st fault. But
if the recovering replica was faulty, the state may be
corrupt and the attacker may forge messages because it



knows the MAC keys used to authenticate both incoming
and outgoing messages. The rest of the recovery protocol
solves these problems.

The recovering replica starts by discarding the keys
it shares with clients and it multicasts a new-key message
to change the keys it uses to authenticate messages sent
by the other replicas. This is important if was faulty
because otherwise the attacker could prevent a successful
recovery by impersonating any client or replica.
Run estimation protocol. Next, runs a simple protocol
to estimate an upper bound, , on the high-water mark
that it would have in its log if it were not faulty. It discards
any entries with greater sequence numbers to bound the
sequence number of corrupt entries in the log.

Estimation works as follows: multicasts a
QUERY-STABLE message to all the other replicas,

where is a random nonce. When replica receives this
message, it replies REPLY-STABLE , where
and are the sequence numbers of the last checkpoint
and the last request prepared at respectively. keeps
retransmitting the query message and processing replies;
it keeps the minimum value of and the maximum value
of it received from each replica. It also keeps its own
values of and .

The recovering replica uses the responses to select
as follows: where is the log size

and is a value received from replica such that 2
replicas other than reported values for less than or
equal to and replicas other than reported values
of greater than or equal to .

For safety, must be greater than any stable
checkpoint so that will not discard log entries when
it is not faulty. This is insured because if a checkpoint
is stable it will have been created by at least 1 non-
faulty replicas and it will have a sequence number less
than or equal to any value of that they propose. The
test against ensures that is close to a checkpoint
at some non-faulty replica since at least one non-faulty
replica reports a not less than ; this is important
because it prevents a faulty replica from prolonging ’s
recovery. Estimation is live because there are 2 1
non-faulty replicas and they only propose a value of
if the corresponding request committed and that implies
that it prepared at at least 1 correct replicas.

After this point participates in the protocol as if it
were not recovering but it will not send any messages
above until it has a correct stable checkpoint with
sequence number greater than or equal to .
Send recovery request. Next sends a recovery request
with the form: REQUEST RECOVERY .
This message is produced by the cryptographic co-
processor and is the co-processor’s counter to prevent
replays. The other replicas reject the request if it is a re-
play or if they accepted a recovery request from recently
(where recently can be defined as half of the watchdog
period). This is important to prevent a denial-of-service
attack where non-faulty replicas are kept busy executing
recovery requests.

The recovery request is treated like any other request:
it is assigned a sequence number and it goes through
the usual three phases. But when another replica executes
the recovery request, it sends its own new-key message.
Replicas also send a new-key message when they fetch
missing state (see Section 4.6) and determine that it
reflects the execution of a new recovery request. This is
important because these keys are known to the attacker if
the recovering replica was faulty. By changing these keys,
we bound the sequence number of messages forged by
the attacker that may be accepted by the other replicas —
they are guaranteed not to accept forged messages with
sequence numbers greater than the maximum high water
mark in the log when the recovery request executes, i.e.,

.
The reply to the recovery request includes the se-

quence number . Replica uses the same protocol
as the client to collect the correct reply to its recovery
request but waits for 2 1 replies. Then it computes its
recovery point, . It also computes
a valid view (see Section 4.5); it retains its current view
if there are 1 replies for views greater than or equal
to it, else it changes to the median of the views in the
replies.
Check and fetch state. While is recovering, it uses
the state transfer mechanism discussed in Section 4.6 to
determine what pages of the state are corrupt and to fetch
pages that are out-of-date or corrupt.

Replica is recovered when the checkpoint with
sequence number is stable. This ensures that any
state other replicas relied on to have is actually held
by 1 non-faulty replicas. Therefore if some other
replica fails now, we can be sure the state of the system
will not be lost. This is true because the estimation
procedure run at the beginning of recovery ensures that
while recovering never sends bad messages for sequence
numbers above the recovery point. Furthermore, the
recovery request ensures that other replicas will not
accept forged messages with sequence numbers greater
than .

Our protocol has the nice property that any replica
knows that has completed its recovery when checkpoint

is stable. This allows replicas to estimate the duration
of ’s recovery, which is useful to detect denial-of-service
attacks that slow down recovery with low false positives.

4.5 View Change Protocol

The view change protocol provides liveness by allowing
the system to make progress when the current primary
fails. The protocol must preserve safety: it must ensure
that non-faulty replicas agree on the sequence numbers
of committed requests across views. In addition, the
protocol must provide liveness: it must ensure that non-
faulty replicas stay in the same view long enough for the
system to make progress, even in the face of a denial-of-
service attack.

The new view change protocol uses the techniques
described in [6] to address liveness but uses a different
approach to preserve safety. Our earlier approach relied



on certificates that were valid indefinitely. In the new
protocol, however, the fact that messages can become
stale means that a replica cannot prove the validity of a
certificate to others. Instead the new protocol relies on
the group of replicas to validate each statement that some
replica claims has a certificate. The rest of this section
describes the new protocol.
Data structures. Replicas record information about what
happened in earlier views. This information is maintained
in two sets, the PSet and the QSet. A replica also
stores the requests corresponding to the entries in these
sets. These sets only contain information for sequence
numbers between the current low and high water marks
in the log; therefore only limited storage is required. The
sets allow the view change protocol to work properly
even when more than one view change occurs before the
system is able to continue normal operation; the sets are
usually empty while the system is running normally.

The PSet at replica stores information about requests
that have prepared at in previous views. Its entries
are tuples meaning that a request with digest
prepared at with number in view and no request
prepared at in a later view.

The QSet stores information about requests that have
pre-prepared at in previous views (i.e., requests for
which has sent a pre-prepare or prepare message). Its
entries are tuples meaning that for
each , is the latest view in which a request pre-
prepared with sequence number and digest at .
View-change messages. View changes are triggered
when the current primary is suspected to be faulty (e.g.,
when a request from a client is not executed after some
period of time; see [6] for details). When a backup
suspects the primary for view is faulty, it enters view
1 and multicasts a VIEW-CHANGE 1
message to all replicas. Here is the sequence number
of the latest stable checkpoint known to ; is a set
of pairs with the sequence number and digest of each
checkpoint stored at ; and and are sets containing
a tuple for every request that is prepared or pre-prepared,
respectively, at . These sets are computed using the
information in the log, the PSet, and the QSet, as
explained in Figure 2. Once the view-change message
has been sent, stores in PSet, in QSet, and clears
its log. The computation bounds the size of each tuple in
QSet; it retains only pairs corresponding to 2 distinct
requests (corresponding to possibly messages from
faulty replicas, one message from a good replica, and
one special null message as explained below). Therefore
the amount of storage used is bounded.
View-change-ack messages. Replicas collect view-
change messages for 1 and send acknowledgments for
them to 1’s primary, . The acknowledgments have the
form VIEW-CHANGE-ACK 1 where is the
identifier of the sender, is the digest of the view-change
message being acknowledged, and is the replica that
sent that view-change message. These acknowledgments
allow the primary to prove authenticity of view-change
messages sent by faulty replicas as explained later.

let be the view before the view change, be the size of
the log, and be the log’s low water mark

for all such that do
if request number with digest is prepared or
committed in view then

add to
else if PSet then

add to

if request number with digest is pre-prepared,
prepared or committed in view then

if QSet then
add to

else if then
add to

else if 1 then
remove entry with lowest view number from
add to

else if QSet then
add to

Figure 2: Computing and

New-view message construction. The new primary
collects view-change and view-change-ack messages

(including messages from itself). It stores view-change
messages in a set . It adds a view-change message
received from replica to after receiving 2 1 view-
change-acks for ’s view-change message from other
replicas. Each entry in is for a different replica.

let 2 1 messages :
1 messages :

if : : then
select checkpoint with digest and number

else exit

for all such that do
A. if with that verifies:

A1. 2 1 messages :
has no entry for or

:
A2. 1 messages :

:
A3. the primary has the request with digest

then select the request with digest for number

B. else if 2 1 messages such that
has no entry for

then select the null request for number

Figure 3: Decision procedure at the primary.

The new primary uses the information in and the
decision procedure sketched in Figure 3 to choose a
checkpoint and a set of requests. This procedure runs
each time the primary receives new information, e.g.,
when it adds a new message to .

The primary starts by selecting the checkpoint that is
going to be the starting state for request processing in
the new view. It picks the checkpoint with the highest
number from the set of checkpoints that are known
to be correct and that have numbers higher than the low



water mark in the log of at least 1 non-faulty replicas.
The last condition is necessary for safety; it ensures that
the ordering information for requests that committed with
numbers higher than is still available.

Next, the primary selects a request to pre-prepare in
the new view for each sequence number between and

(where is the size of the log). For each number
that was assigned to some request that committed

in a previous view, the decision procedure selects to
pre-prepare in the new view with the same number. This
ensures safety because no distinct request can commit
with that number in the new view. For other numbers, the
primary may pre-prepare a request that was in progress
but had not yet committed, or it might select a special
null request that goes through the protocol as a regular
request but whose execution is a no-op.

We now argue informally that this procedure will
select the correct value for each sequence number. If
a request committed at some non-faulty replica with
number , it prepared at at least 1 non-faulty replicas
and the view-change messages sent by those replicas will
indicate that prepared with number . Any set of at
least 2 1 view-change messages for the new view must
include a message from one of the non-faulty replicas that
prepared . Therefore, the primary for the new view
will be unable to select a different request for number
because no other request will be able to satisfy conditions
A1 or B (in Figure 3).

The primary will also be able to make the right de-
cision eventually: condition A1 will be satisfied because
there are 2 1 non-faulty replicas and non-faulty repli-
cas never prepare different requests for the same view
and sequence number; A2 is also satisfied since a request
that prepares at a non-faulty replica pre-prepares at at
least 1 non-faulty replicas. Condition A3 may not be
satisfied initially, but the primary will eventually receive
the request in a response to its status messages (discussed
in Section 4.6). When a missing request arrives, this will
trigger the decision procedure to run.

The decision procedure ends when the primary has se-
lected a request for each number. This takes 3

local steps in the worst case but the normal case is much
faster because most replicas propose identical values. Af-
ter deciding, the primary multicasts a new-view message
to the other replicas with its decision. The new-view
message has the form NEW-VIEW 1 . Here,

contains a pair for each entry in consisting of the
identifier of the sending replica and the digest of its view-
change message, and identifies the checkpoint and
request values selected.
New-view message processing. The primary updates its
state to reflect the information in the new-view message.
It records all requests in as pre-prepared in view 1
in its log. If it does not have the checkpoint with sequence
number it also initiates the protocol to fetch the missing
state (see Section 4.6.2). In any case the primary does not
accept any prepare or commit messages with sequence
number less than or equal to and does not send any
pre-prepare message with such a sequence number.

The backups for view 1 collect messages until they
have a correct new-view message and a correct matching
view-change message for each pair in . If some replica
changes its keys in the middle of a view change, it has to
discard all the view-change protocol messages it already
received with the old keys. The message retransmission
mechanism causes the other replicas to re-send these
messages using the new keys.

If a backup did not receive one of the view-change
messages for some replica with a pair in , the primary
alone may be unable to prove that the message it received
is authentic because it is not signed. The use of view-
change-ack messages solves this problem. The primary
only includes a pair for a view-change message in after
it collects 2 1 matching view-change-ack messages
from other replicas. This ensures that at least 1 non-
faulty replicas can vouch for the authenticity of every
view-change message whose digest is in . Therefore, if
the original sender of a view-change is uncooperative, the
primary retransmits that sender’s view-change message
and the non-faulty backups retransmit their view-change-
acks. A backup can accept a view-change message whose
authenticator is incorrect if it receives view-change-
acks that match the digest and identifier in .

After obtaining the new-view message and the match-
ing view-change messages, the backups check whether
these messages support the decisions reported by the pri-
mary by carrying out the decision procedure in Figure 3.
If they do not, the replicas move immediately to view

2. Otherwise, they modify their state to account for
the new information in a way similar to the primary. The
only difference is that they multicast a prepare message
for 1 for each request they mark as pre-prepared.
Thereafter, the protocol proceeds as described in Sec-
tion 4.2.

The replicas use the status mechanism in Section 4.6
to request retransmission of missing requests as well
as missing view-change, view-change acknowledgment,
and new-view messages.

4.6 Obtaining Missing Information

This section describes the mechanisms for message
retransmission and state transfer. The state transfer
mechanism is necessary to bring replicas up to date when
some of the messages they are missing were garbage
collected.

4.6.1 Message Retransmission

We use a receiver-based recovery mechanism similar to
SRM [8]: a replica multicasts small status messages
that summarize its state; when other replicas receive a
status message they retransmit messages they have sent
in the past that is missing. Status messages are sent
periodically and when the replica detects that it is missing
information (i.e., they also function as negative acks).

If a replica is unable to validate a status message, it
sends its last new-key message to . Otherwise, sends
messages it sent in the past that may be missing. For



example, if is in a view less than ’s, sends its
latest view-change message. In all cases, authenticates
messages it retransmits with the latest keys it received in
a new-key message from . This is important to ensure
liveness with frequent key changes.

Clients retransmit requests to replicas until they re-
ceive enough replies. They measure response times to
compute the retransmission timeout and use a random-
ized exponential backoff if they fail to receive a reply
within the computed timeout.

4.6.2 State Transfer

A replica may learn about a stable checkpoint beyond
the high water mark in its log by receiving checkpoint
messages or as the result of a view change. In this case, it
uses the state transfer mechanism to fetch modifications
to the service state that it is missing.

It is important for the state transfer mechanism to
be efficient because it is used to bring a replica up to
date during recovery, and we perform proactive recover-
ies frequently. The key issues to achieving efficiency are
reducing the amount of information transferred and re-
ducing the burden imposed on replicas. This mechanism
must also ensure that the transferred state is correct. We
start by describing our data structures and then explain
how they are used by the state transfer mechanism.
Data Structures. We use hierarchical state partitions
to reduce the amount of information transferred. The
root partition corresponds to the entire service state
and each non-leaf partition is divided into equal-
sized, contiguous sub-partitions. We call leaf partitions
pages and interior partitions meta-data. For example,
the experiments described in Section 6 were run with a
hierarchy with four levels, equal to 256, and 4KB pages.

Each replica maintains one logical copy of the parti-
tion tree for each checkpoint. The copy is created when
the checkpoint is taken and it is discarded when a later
checkpoint becomes stable. The tree for a checkpoint
stores a tuple for each meta-data partition and a
tuple for each page. Here, is the sequence
number of the checkpoint at the end of the last checkpoint
interval where the partition was modified, is the digest
of the partition, and is the value of the page.

The digests are computed efficiently as follows. For
a page, is obtained by applying the MD5 hash func-
tion [27] to the string obtained by concatenating the in-
dex of the page within the state, its value of and .
For meta-data, is obtained by applying MD5 to the
string obtained by concatenating the index of the parti-
tion within its level, its value of , and the sum modulo a
large integer of the digests of its sub-partitions. Thus, we
apply AdHash [1] at each meta-data level. This construc-
tion has the advantage that the digests for a checkpoint
can be obtained efficiently by updating the digests from
the previous checkpoint incrementally.

The copies of the partition tree are logical because
we use copy-on-write so that only copies of the tuples
modified since the checkpoint was taken are stored. This

reduces the space and time overheads for maintaining
these checkpoints significantly.
Fetching State. The strategy to fetch state is to recurse
down the hierarchy to determine which partitions are out
of date. This reduces the amount of information about
(both non-leaf and leaf) partitions that needs to be fetched.

A replica multicasts FETCH to all
replicas to obtain information for the partition with index

in level of the tree. Here, is the sequence number
of the last checkpoint knows for the partition, and is
either -1 or it specifies that is seeking the value of the
partition at sequence number from replica .

When a replica determines that it needs to initiate
a state transfer, it multicasts a fetch message for the root
partition with equal to its last checkpoint. The value
of is non-zero when knows the correct digest of the
partition information at checkpoint , e.g., after a view
change completes knows the digest of the checkpoint
that propagated to the new view but might not have it.
also creates a new (logical) copy of the tree to store the
state it fetches and initializes a table in which it stores
the number of the latest checkpoint reflected in the state
of each partition in the new tree. Initially each entry in
the table will contain .

If FETCH is received by the desig-
nated replier, , and it has a checkpoint for sequence
number , it sends back META-DATA , where

is a set with a tuple for each sub-partition
of with index , digest , and . Since
knows the correct digest for the partition value at check-
point , it can verify the correctness of the reply without
the need for voting or even authentication. This reduces
the burden imposed on other replicas.

The other replicas only reply to the fetch message if
they have a stable checkpoint greater than and . Their
replies are similar to ’s except that is replaced by
the sequence number of their stable checkpoint and the
message contains a MAC. These replies are necessary
to guarantee progress when replicas have discarded a
specific checkpoint requested by .

Replica retransmits the fetch message (choosing a
different each time) until it receives a valid reply from
some or 1 equally fresh responses with the same sub-
partition values for the same sequence number (greater
than and ). Then, it compares its digests for each sub-
partition of with those in the fetched information; it
multicasts a fetch message for sub-partitions where there
is a difference, and sets the value in to (or ) for
the sub-partitions that are up to date. Since learns the
correct digest of each sub-partition at checkpoint (or

) it can use the optimized protocol to fetch them.
The protocol recurses down the tree until sends

fetch messages for out-of-date pages. Pages are fetched
like other partitions except that meta-data replies contain
the digest and last modification sequence number for the
page rather than sub-partitions, and the designated replier
sends back DATA . Here, is the page index and
is the page value. The protocol imposes little overhead
on other replicas; only one replica replies with the full



page and it does not even need to compute a MAC for
the message since can verify the reply using the digest
it already knows.

When obtains the new value for a page, it updates
the state of the page, its digest, the value of the last modi-
fication sequence number, and the value corresponding to
the page in . Then, the protocol goes up to its parent
and fetches another missing sibling. After fetching all
the siblings, it checks if the parent partition is consistent.
A partition is consistent up to sequence number if
is the minimum of all the sequence numbers in for
its sub-partitions, and is greater than or equal to the
maximum of the last modification sequence numbers in
its sub-partitions. If the parent partition is not consistent,
the protocol sends another fetch for the partition. Other-
wise, the protocol goes up again to its parent and fetches
missing siblings.

The protocol ends when it visits the root partition
and determines that it is consistent for some sequence
number . Then the replica can start processing requests
with sequence numbers greater than .

Since state transfer happens concurrently with request
execution at other replicas and other replicas are free to
garbage collect checkpoints, it may take some time for a
replica to complete the protocol, e.g., each time it fetches
a missing partition, it receives information about yet a
later modification. This is unlikely to be a problem in
practice (this intuition is confirmed by our experimental
results). Furthermore, if the replica fetching the state ever
is actually needed because others have failed, the system
will wait for it to catch up.

4.7 Discussion

Our system ensures safety and liveness for an execution
provided at most replicas become faulty within a

window of vulnerability of size 2 . The
values of and are characteristic of each execution

and unknown to the algorithm. is the maximum
key refreshment period in for a non-faulty node, and
is the maximum time between when a replica fails and
when it recovers from that fault in .

The message authentication mechanism from Sec-
tion 4.1 ensures non-faulty nodes only accept certificates
with messages generated within an interval of size at
most 2 .1 The bound on the number of faults within

ensures there are never more than faulty replicas
within any interval of size at most 2 . Therefore, safety
and liveness are provided because non-faulty nodes never
accept certificates with more than bad messages.

We have little control over the value of because
may be increased by a denial-of-service attack, but

we have good control over and the maximum time
between watchdog timeouts, , because their values
are determined by timer rates, which are quite stable.
Setting these timeout values involves a tradeoff between

1It would be except that during view changes replicas may accept
messages that are claimed authentic by 1 replicas without directly
checking their authentication token.

security and performance: small values improve security
by reducing the window of vulnerability but degrade
performance by causing more frequent recoveries and
key changes. Section 6 analyzes this tradeoff.

The value of should be set based on , the time
it takes to recover a non-faulty replica under normal load
conditions. There is no point in recovering a replica
when its previous recovery has not yet finished; and we
stagger the recoveries so that no more than replicas
are recovering at once, since otherwise service could be
interrupted even without an attack. Therefore, we set

4 . Here, the factor 4 accounts for the
staggered recovery of 3 1 replicas at a time, and is
a safety factor to account for benign overload conditions
(i.e., no attack).

Another issue is the bound on the number of faults.
Our replication technique is not useful if there is a strong
positive correlation between the failure probabilities of
the replicas; the probability of exceeding the bound may
not be lower than the probability of a single fault in this
case. Therefore, it is important to take steps to increase
diversity. One possibility is to have diversity in the exe-
cution environment: the replicas can be administered by
different people; they can be in different geographic loca-
tions; and they can have different configurations (e.g., run
different combinations of services, or run schedulers with
different parameters). This improves resilience to several
types of faults, for example, attacks involving physical
access to the replicas, administrator attacks or mistakes,
attacks that exploit weaknesses in other services, and
software bugs due to race conditions. Another possibil-
ity is to have software diversity; replicas can run different
operating systems and different implementations of the
service code. There are several independent implemen-
tations available for operating systems and important ser-
vices (e.g. file systems, data bases, and WWW servers).
This improves resilience to software bugs and attacks that
exploit software bugs.

Even without taking any steps to increase diversity,
our proactive recovery technique increases resilience to
nondeterministic software bugs, to software bugs due
to aging (e.g., memory leaks), and to attacks that take
more time than to succeed. It is possible to improve
security further by exploiting software diversity across
recoveries. One possibility is to restrict the service
interface at a replica after its state is found to be corrupt.
Another potential approach is to use obfuscation and
randomization techniques [7, 9] to produce a new version
of the software each time a replica is recovered. These
techniques are not very resilient to attacks but they can
be very effective when combined with proactive recovery
because the attacker has a bounded time to break them.

5 Implementation

We implemented the algorithm as a library with a very
simple interface (see Figure 4). Some components of the
library run on clients and others at the replicas.

On the client side, the library provides a procedure



Client:
int Byz init client(char conf);
int Byz invoke(Byz req req, Byz rep rep, bool read only);

Server:
int Byz init replica(char conf, char mem, int size, UC exec);
void Byz modify(char mod, int size);

Server upcall:
int execute(Byz req req, Byz rep rep, int client);

Figure 4: The replication library API.

to initialize the client using a configuration file, which
contains the public keys and IP addresses of the replicas.
The library also provides a procedure, invoke, that is
called to cause an operation to be executed. This
procedure carries out the client side of the protocol and
returns the result when enough replicas have responded.

On the server side, we provide an initialization
procedure that takes as arguments a configuration file
with the public keys and IP addresses of replicas and
clients, the region of memory where the application state
is stored, and a procedure to execute requests. When
our system needs to execute an operation, it makes an
upcall to the execute procedure. This procedure carries
out the operation as specified for the application, using
the application state. As the application performs the
operation, each time it is about to modify the application
state, it calls the modify procedure to inform us of the
locations about to be modified. This call allows us to
maintain checkpoints and compute digests efficiently as
described in Section 4.6.2.

6 Performance Evaluation

This section has two parts. First, it presents results of
experiments to evaluate the benefit of eliminating public-
key cryptography from the critical path. Then, it presents
an analysis of the cost of proactive recoveries.

6.1 Experimental Setup

All experiments ran with four replicas. Four replicas can
tolerate one Byzantine fault; we expect this reliability
level to suffice for most applications. Clients and
replicas ran on Dell Precision 410 workstations with
Linux 2.2.16-3 (uniprocessor). These workstations have
a 600 MHz Pentium III processor, 512 MB of memory,
and a Quantum Atlas 10K 18WLS disk. All machines
were connected by a 100 Mb/s switched Ethernet and
had 3Com 3C905B interface cards. The switch was an
Extreme Networks Summit48 V4.1. The experiments ran
on an isolated network.

The interval between checkpoints, , was 128 re-
quests, which causes garbage collection to occur several
times in each experiment. The size of the log, , was
256. The state partition tree had 4 levels, each internal
node had 256 children, and the leaves had 4 KB.

6.2 The cost of Public-Key Cryptography

To evaluate the benefit of using MACs instead of public
key signatures, we implemented BFT-PK. Our previous
algorithm [6] relies on the extra power of digital sig-
natures to authenticate pre-prepare, prepare, checkpoint,
and view-change messages but it can be easily modified
to use MACs to authenticate other messages. To provide
a fair comparison, BFT-PK is identical to the BFT library
but it uses public-key signatures to authenticate these four
types of messages. We ran a micro benchmark, and a file
system benchmark to compare the performance of ser-
vices implemented with the two libraries. There were no
view changes, recoveries or key changes in these experi-
ments.

6.2.1 Micro-Benchmark

The micro-benchmark compares the performance of two
implementations of a simple service: one implementation
uses BFT-PK and the other uses BFT. This service has
no state and its operations have arguments and results of
different sizes but they do nothing. We also evaluated
the performance of NO-REP: an implementation of
the service using UDP with no replication. We ran
experiments to evaluate the latency and throughput of
the service. The comparison with NO-REP shows the
worst case overhead for our library; in real services, the
relative overhead will be lower due to computation or I/O
at the clients and servers.

Table 1 reports the latency to invoke an operation
when the service is accessed by a single client. The results
were obtained by timing a large number of invocations
in three separate runs. We report the average of the three
runs. The standard deviations were always below 0.5%
of the reported value.

system 0/0 0/4 4/0
BFT-PK 59368 59761 59805
BFT 431 999 1046
NO-REP 106 625 630

Table 1: Micro-benchmark: operation latency in mi-
croseconds. Each operation type is denoted by a/b, where
a and b are the sizes of the argument and result in KB.

BFT-PK has two signatures in the critical path and
each of them takes 29.4 ms to compute. The algorithm
described in this paper eliminates the need for these
signatures. As a result, BFT is between 57 and 138
times faster than BFT-PK. BFT’s latency is between 60%
and 307% higher than NO-REP because of additional
communication and computation overhead. For read-
only requests, BFT uses the optimization described in [6]
that reduces the slowdown for operations 0/0 and 0/4 to
93% and 25%, respectively.

We also measured the overhead of replication at the
client. BFT increases CPU time relative to NO-REP by
up to a factor of 5, but the CPU time at the client is only
between 66 and 142 s per operation. BFT also increases
the number of bytes in Ethernet packets that are sent or
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Figure 5: Micro-benchmark: throughput in operations per second.

received by the client: 405% for the 0/0 operation but
only 12% for the other operations.

Figure 5 compares the throughput of the different im-
plementations of the service as a function of the number
of clients. The client processes were evenly distributed
over 5 client machines2 and each client process invoked
operations synchronously, i.e., it waited for a reply before
invoking a new operation. Each point in the graph is the
average of at least three independent runs and the stan-
dard deviation for all points was below 4% of the reported
value (except that it was as high as 17% for the last four
points in the graph for BFT-PK operation 4/0). There are
no points with more than 15 clients for NO-REP opera-
tion 4/0 because of lost request messages; NO-REP uses
UDP directly and does not retransmit requests.

The throughput of both replicated implementations
increases with the number of concurrent clients because
the library implements batching [4]. Batching inlines
several requests in each pre-prepare message to amortize
the protocol overhead. BFT-PK performs 5 to 11 times
worse than BFT because signing messages leads to a
high protocol overhead and there is a limit on how many
requests can be inlined in a pre-prepare message.

The bottleneck in operation 0/0 is the server’s CPU;
BFT’s maximum throughput is 53% lower than NO-
REP’s due to extra messages and cryptographic oper-
ations that increase the CPU load. The bottleneck in
operation 4/0 is the network; BFT’s throughput is within
11% of NO-REP’s because BFT does not consume signif-
icantly more network bandwidth in this operation. BFT
achieves a maximum aggregate throughput of 26 MB/s
in operation 0/4 whereas NO-REP is limited by the link
bandwidth (approximately 12 MB/s). The throughput is
better in BFT because of an optimization that we de-
scribed in [6]: each client chooses one replica randomly;
this replica’s reply includes the 4 KB but the replies of
the other replicas only contain small digests. As a result,
clients obtain the large replies in parallel from different
replicas. We refer the reader to [4] for a detailed analysis
of these latency and throughput results.

2Two client machines had 700 MHz PIIIs but were otherwise
identical to the other machines.

6.2.2 File System Benchmarks

We implemented the Byzantine-fault-tolerant NFS ser-
vice that was described in [6]. The next set of exper-
iments compares the performance of two implementa-
tions of this service: BFS, which uses BFT, and BFS-PK,
which uses BFT-PK.

The experiments ran the modified Andrew bench-
mark [25, 15], which emulates a software development
workload. It has five phases: (1) creates subdirectories
recursively; (2) copies a source tree; (3) examines the
status of all the files in the tree without examining their
data; (4) examines every byte of data in all the files; and
(5) compiles and links the files. Unfortunately, Andrew
is so small for today’s systems that it does not exercise
the NFS service. So we increased the size of the bench-
mark by a factor of as follows: phase 1 and 2 create

copies of the source tree, and the other phases operate
in all these copies. We ran a version of Andrew with

equal to 100, Andrew100, and another with equal
to 500, Andrew500. BFS builds a file system inside a
memory mapped file [6]. We ran Andrew100 in a file
system file with 205 MB and Andrew500 in a file sys-
tem file with 1 GB; both benchmarks fill 90% of theses
files. Andrew100 fits in memory at both the client and
the replicas but Andrew500 does not.

We also compare BFS and the NFS implementation in
Linux, NFS-std. The performance of NFS-std is a good
metric of what is acceptable because it is used daily by
many users. For all configurations, the actual benchmark
code ran at the client workstation using the standard NFS
client implementation in the Linux kernel with the same
mount options. The most relevant of these options for
the benchmark are: UDP transport, 4096-byte read and
write buffers, allowing write-back client caching, and
allowing attribute caching.

Tables 2 and 3 present the results for these experi-
ments. We report the mean of 3 runs of the benchmark.
The standard deviation was always below 1% of the re-
ported averages except for phase 1 where it was as high
as 33%. The results show that BFS-PK takes 12 times
longer than BFS to run Andrew100 and 15 times longer
to run Andrew500. The slowdown is smaller than the
one observed with the micro-benchmarks because the



phase BFS-PK BFS NFS-std
1 25.4 0.7 0.6
2 1528.6 39.8 26.9
3 80.1 34.1 30.7
4 87.5 41.3 36.7
5 2935.1 265.4 237.1

total 4656.7 381.3 332.0

Table 2: Andrew100: elapsed time in seconds

client performs a significant amount of computation in
this benchmark.

Both BFS and BFS-PK use the read-only optimiza-
tion described in [6] for reads and lookups, and as a
consequence do not set the time-last-accessed attribute
when these operations are invoked. This reduces the per-
formance difference between BFS and BFS-PK during
phases 3 and 4 where most operations are read-only.

phase BFS-PK BFS NFS-std
1 122.0 4.2 3.5
2 8080.4 204.5 139.6
3 387.5 170.2 157.4
4 496.0 262.8 232.7
5 23201.3 1561.2 1248.4

total 32287.2 2202.9 1781.6

Table 3: Andrew500: elapsed time in seconds

BFS-PK is impractical but BFS’s performance is close
to NFS-std: it performs only 15% slower in Andrew100
and 24% slower in Andrew500. The performance dif-
ference would be lower if Linux implemented NFS cor-
rectly. For example, we reported previously [6] that BFS
was only 3% slower than NFS in Digital Unix, which
implements the correct semantics. The NFS implemen-
tation in Linux does not ensure stability of modified data
and meta-data as required by the NFS protocol, whereas
BFS ensures stability through replication.

6.3 The Cost of Recovery

Frequent proactive recoveries and key changes improve
resilience to faults by reducing the window of vulnerabil-
ity, but they also degrade performance. We ran Andrew
to determine the minimum window of vulnerability that
can be achieved without overlapping recoveries. Then we
configured the replicated file system to achieve this win-
dow, and measured the performance degradation relative
to a system without recoveries.

The implementation of the proactive recovery mech-
anism is complete except that we are simulating the se-
cure co-processor, the read-only memory, and the watch-
dog timer in software. We are also simulating fast re-
boots. The LinuxBIOS project [22] has been experiment-
ing with replacing the BIOS by Linux. They claim to be
able to reboot Linux in 35 s (0.1 s to get the kernel running
and 34.9 to execute scripts in /etc/rc.d) [22]. This
means that in a suitably configured machine we should
be able to reboot in less than a second. Replicas simulate

a reboot by sleeping either 1 or 30 seconds and calling
msync to invalidate the service-state pages (this forces
reads from disk the next time they are accessed).

6.3.1 Recovery Time

The time to complete recovery determines the minimum
window of vulnerability that can be achieved without
overlaps. We measured the recovery time for Andrew100
and Andrew500 with 30s reboots and with the period
between key changes, , set to 15s.

Table 4 presents a breakdown of the maximum time to
recover a replica in both benchmarks. Since the processes
of checking the state for correctness and fetching missing
updates over the network to bring the recovering replica
up to date are executed in parallel, Table 4 presents a
single line for both of them. The line labeled restore
state only accounts for reading the log from disk the
service state pages are read from disk on demand when
they are checked.

Andrew100 Andrew500
save state 2.84 6.3

reboot 30.05 30.05
restore state 0.09 0.30
estimation 0.21 0.15

send new-key 0.03 0.04
send request 0.03 0.03

fetch and check 9.34 106.81
total 42.59 143.68

Table 4: Andrew: recovery time in seconds.

The most significant components of the recovery time
are the time to save the replica’s log and service state
to disk, the time to reboot, and the time to check and
fetch state. The other components are insignificant. The
time to reboot is the dominant component for Andrew100
and checking and fetching state account for most of the
recovery time in Andrew500 because the state is bigger.

Given these times, we set the period between watch-
dog timeouts, , to 3.5 minutes in Andrew100 and to 10
minutes in Andrew500. These settings correspond to a
minimum window of vulnerability of 4 and 10.5 minutes,
respectively. We also run the experiments for Andrew100
with a 1s reboot and the maximum time to complete re-
covery in this case was 13.3s. This enables a window of
vulnerability of 1.5 minutes with set to 1 minute.

Recovery must be fast to achieve a small window of
vulnerability. While the current recovery times are low, it
is possible to reduce them further. For example, the time
to check the state can be reduced by periodically backing
up the state onto a disk that is normally write-protected
and by using copy-on-write to create copies of modified
pages on a writable disk. This way only the modified
pages need to be checked. If the read-only copy of the
state is brought up to date frequently (e.g., daily), it will
be possible to scale to very large states while achieving
even lower recovery times.



6.3.2 Recovery Overhead

We also evaluated the impact of recovery on performance
in the experimental setup described in the previous sec-
tion. Table 5 shows the results. BFS-rec is BFS with
proactive recoveries. The results show that adding fre-
quent proactive recoveries to BFS has a low impact on
performance: BFS-rec is 16% slower than BFS in An-
drew100 and 2% slower in Andrew500. In Andrew100
with 1s reboot and a window of vulnerability of 1.5 min-
utes, the time to complete the benchmark was 482.4s; this
is only 27% slower than the time without recoveries even
though every 15s one replica starts a recovery.

The results also show that the period between key
changes, , can be small without impacting performance
significantly. could be smaller than 15s but it should be
substantially larger than 3 message delays under normal
load conditions to provide liveness.

system Andrew100 Andrew500
BFS-rec 443.5 2257.8
BFS 381.3 2202.9
NFS-std 332.0 1781.6

Table 5: Andrew: recovery overhead in seconds.

There are several reasons why recoveries have a
low impact on performance. The most obvious is that
recoveries are staggered such that there is never more
than one replica recovering; this allows the remaining
replicas to continue processing client requests. But it is
necessary to perform a view change whenever recovery
is applied to the current primary and the clients cannot
obtain further service until the view change completes.
These view changes are inexpensive because a primary
multicasts a view-change message just before its recovery
starts and this causes the other replicas to move to the next
view immediately.

7 Related Work
Most previous work on replication techniques assumed
benign faults, e.g., [17, 23, 18, 19] or a synchronous sys-
tem model, e.g., [28]. Earlier Byzantine-fault-tolerant
systems [26, 16, 20], including the algorithm we de-
scribed in [6], could guarantee safety only if fewer than
1 3 of the replicas were faulty during the lifetime of the
system. This guarantee is too weak for long-lived sys-
tems. Our system improves this guarantee by recovering
replicas proactively and frequently; it can tolerate any
number of faults if fewer than 1 3 of the replicas be-
come faulty within a window of vulnerability, which can
be made small under normal load conditions with low
impact on performance.

In a previous paper [6], we described a system that
tolerated Byzantine faults in asynchronous systems and
performed well. This paper extends that work by
providing recovery, a state transfer mechanism, and a new
view change mechanism that enables both recovery and
an important optimization — the use of MACs instead of
public-key cryptography.

Rampart [26] and SecureRing [16] provide group
membership protocols that can be used to implement
recovery, but only in the presence of benign faults. These
approaches cannot be guaranteed to work in the presence
of Byzantine faults for two reasons. First, the system may
be unable to provide safety if a replica that is not faulty
is removed from the group to be recovered. Second, the
algorithms rely on messages signed by replicas even after
they are removed from the group and there is no way to
prevent attackers from impersonating removed replicas
that they controlled.

The problem of efficient state transfer has not been
addressed by previous work on Byzantine-fault-tolerant
replication. We present an efficient state transfer mecha-
nism that enables frequent proactive recoveries with low
performance degradation.

Public-key cryptography was the major performance
bottleneck in previous systems [26, 16] despite the fact
that these systems include sophisticated techniques to
reduce the cost of public-key cryptography at the expense
of security or latency. They cannot use MACs instead
of signatures because they rely on the extra power of
digital signatures to work correctly: signatures allow the
receiver of a message to prove to others that the message
is authentic, whereas this may be impossible with MACs.
The view change mechanism described in this paper does
not require signatures. It allows public-key cryptography
to be eliminated, except for obtaining new secret keys.
This approach improves performance by up to two orders
of magnitude without loosing security.

The concept of a system that can tolerate more than
faults provided no more than nodes in the system

become faulty in some time window was introduced
in [24]. This concept has previously been applied
in synchronous systems to secret-sharing schemes [13],
threshold cryptography [14], and more recently secure
information storage and retrieval [10] (which provides
single-writer single-reader replicated variables). But our
algorithm is more general; it allows a group of nodes in
an asynchronous system to implement an arbitrary state
machine.

8 Conclusions

This paper has described a new state-machine replication
system that offers both integrity and high availability in
the presence of Byzantine faults. The new system can
be used to implement real services because it performs
well, works in asynchronous systems like the Internet,
and recovers replicas to enable long-lived services.

The system described here improves the security and
robustness against software errors of previous systems
by recovering replicas proactively and frequently. It
can tolerate any number of faults provided fewer than
1 3 of the replicas become faulty within a window
of vulnerability. This window can be small (e.g., a
few minutes) under normal load conditions and when
the attacker does not corrupt replicas’ copies of the
service state. Additionally, our system provides intrusion



detection; it detects denial-of-service attacks aimed at
increasing the window and detects the corruption of the
state of a recovering replica.

Recovery from Byzantine faults is harder than recov-
ery from benign faults for several reasons: the recovery
protocol itself needs to tolerate other Byzantine-faulty
replicas; replicas must be recovered proactively; and at-
tackers must be prevented from impersonating recovered
replicas that they controlled. For example, the last re-
quirement prevents signatures in messages from being
valid indefinitely. However, this leads to a further prob-
lem, since replicas may be unable to prove to a third party
that some message they received is authentic (because its
signature is no longer valid). All previous state-machine
replication algorithms relied on such proofs. Our algo-
rithm does not rely on these proofs and has the added
advantage of enabling the use of symmetric cryptogra-
phy for authentication of all protocol messages. This
eliminates the use of public-key cryptography, the major
performance bottleneck in previous systems.

The algorithm has been implemented as a generic
program library with a simple interface that can be used
to provide Byzantine-fault-tolerant versions of different
services. We used the library to implement BFS, a
replicated NFS service, and ran experiments to determine
the performance impact of our techniques by comparing
BFS with an unreplicated NFS. The experiments show
that it is possible to use our algorithm to implement real
services with performance close to that of an unreplicated
service. Furthermore, they show that the window of
vulnerability can be made very small: 1.5 to 10 minutes
with only 2% to 27% degradation in performance.
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