
Proceedings of the 1995 ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)

Bidirectional Object Layout for Separate Compilation

Andrew C. Myers
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139, USA

andru@lcs.mit.edu

Abstract

Existing schemes for object layout and dispatch in the
presence of multiple inheritance and separate compilation
waste space and are slower than systems with single
inheritance. This paper describes the bidirectional object
layout, a new scheme for object layout that produces smaller
objects and faster method invocations than existing schemes
by automatically optimizing particular uses of multiple
inheritance. The bidirectional object layout is used for
the programming language Theta, and is applicable to
languages like C++. This paper also demonstrates how
to efficiently implement method dispatch when method
signatures are allowed to change in subclasses. Most current
statically compiled languages require identical signatures for
efficiency.

1 Introduction

Existing schemes for object memory layout and method
dispatch in statically typed languages with multiple
inheritance assume the use of multiple inheritance in
its full generality. These schemes incur high per-object
space overhead [Str87], extra dispatch cost, or a global
type analysis phase [DMSV89].

Web site: http://www.pmg.lcs.mit.edu/˜andru/. This research
was supported in part by the Advanced Research Projects Agency
of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136 and in part by the
National Science Foundation under grant CCR-8822158.

Copyright c 1995 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that new copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

These problems are addressed by the bidirectional
object layout, a new scheme suitable for separately-
compiled languages with multiple inheritance. The
primary advantage of this object layout is that it
supports faster method dispatch than current C++
implementations [ES90], while reducing the amount
of per-object dispatch information. This paper presents
precise rules for constructing bidirectional layouts and
explains the dispatch code needed for typical RISC
architectures.

Bidirectional object layouts can be efficiently com-
puted because the construction rules use only local
knowledge of the type hierarchy to compact the dis-
patch information. By requiring only local analysis,
this technique can be used with separate compilation
since new classes added to the system cannot invalidate
the layout of existing classes. Therefore, the bidirec-
tional layout scheme scales better to large-scale soft-
ware development than other compact layout schemes
requiring a global type analysis phase.

A separate contribution of this paper is an efficient
implementation of method signature refinement: a
type may compatibly modify the argument and return
types of a method derived from its supertypes, in
accordance with the usual subtyping rules [Car84].
This feature is regrettably missing from other statically
compiled languages like C++ or Modula-3 [Nel91].
The technique described here allows a class to refine
superclass method signatures yet retain fast method
dispatch.

The bidirectional object layout has been implemented
for the programming language Theta [DGLM95,
LCD 94, Mye94], a separately-compiled, statically-
typed language which separates subtyping and inher-
itance. Theta allows a class to have any number of
explicitly declared abstract supertypes, but only a sin-

1

gle concrete superclass. This policy results from ob-
servations about the three common uses of multiple
inheritance in programs, which are exploited by the
bidirectional layout to generate more compact layouts:

subtyping An abstract type, or interface, combines
several existing interfaces and extends them. The
abstract type is a subtype, and the extended
interfaces are its supertypes. Elsewhere, this use
is sometimes called “interface inheritance” among
“abstract classes”.

abstraction An implementation (a class) is isolated
from the interface it implements, providing separate
hierarchies for inheritance and subtyping. As
a result, a type need not expose implementation
details for subtype implementations to inherit them.

inheritance A new implementation is formed by
combining and extending existing implementations.
The new implementation is a subclass, and the
extended implementations are its superclasses. In
addition to method code, a class contains instance
variables and private methods that are not accessible
outside the class and its subclasses. In this paper,
the term “inheritance” is used exclusively to mean
implementation inheritance.

The bidirectional layout supports the complex
abstract-type/class hierarchy shown in Figure 1 as
efficiently as single-inheritance classes in C++. This
common kind of hierarchy has only the subtyping
and abstraction uses of multiple inheritance. In the
figure, the are classes, and the are abstract types.
Arrows are used to denote the relations “is a subtype
of”, “implements”, and “inherits from”, depending on
whether the two related entities are two abstract types, a
class and an abstract type, or two classes. For example,

1 is the supertype of 2, and 3 implements 3. Such
hierarchies are common, because they provide a layer of
abstraction that separates interface and implementation.

Although subtyping and inheritance are separate,
they often develop in parallel. Separate hierarchies
allow us to add new implementations of any of the
types in the ladder 1 2 without being forced to
inherit from existing classes. On the other hand, an
implementation of one of these types is often useful
in constructing an implementation of a subtype (either
direct or indirect), so inheritance often roughly mirrors

1

1 2

2 3

3

Figure 1: A common kind of hierarchy

the subtype hierarchy. For lack of a better technique,
C++ programmers use true multiple inheritance and
other inefficient idioms to achieve this same separation.

The bidirectional layout does better than current
schemes because it implements subtyping and abstrac-
tion differently from true inheritance. It specifically
optimizes lattice-like hierarchies like the one shown
in Figure 1, where the types that a class and a super-
class implement are in a parallel supertype relationship.
Even with the use of true multiple inheritance, the bidi-
rectional layout never imposes a penalty compared to
current C++ implementations.

As in current C++ implementations, the layout of
a class is determined using only information about
that class and the hierarchy above it, with the result
that new types and classes added to the system do
not invalidate existing layouts. Changes to classes
only affect their subclasses, and changes to types only
affect their subtypes and the classes that implement
the subtypes. Note that the supertype relation must be
explicitly declared rather than being implicitly inferred
from method signatures.

2 Bidirectional Layout

The bidirectional layout differs from the layouts used
by many C++ implementations [Str87], though there
are similarities. An object has a fixed memory layout,
defined by its class. Figure 2 illustrates an object
layout, which is divided in two parts (note that memory
addresses increase downward within each box):

A dispatch header, which is an array of pointers to
various dispatch vectors. Each dispatch vector is
itself an array of pointers to method code, indexed
by small integers that are the method indices.
The dispatch vector supports selector-table indexed
(STI) dispatching [Ros88]. Each dispatch vector of

2

dispatch
header

fields

dispatch
vectorsobject

class dispatch vector

Figure 2: Bidirectional object layout

an object specifies a different mapping from indices
to methods. The last (bottom) dispatch vector,
which is always present, is the class dispatch vector.
It contains all the methods that can be called on the
object. The other dispatch vectors are called type
dispatch vectors.

Dispatch vectors are shared by all objects of the
particular class that owns them, but each object
has its own copy of the dispatch header that
points to them. Most objects have only a single
dispatch vector, so only one word is consumed by
the dispatch header. With the use of inheritance
or subtyping, the dispatch header layout grows
backward in memory, if it grows at all.

Fields, which contain mutable object data (usually
instance variables), are located after the dispatch
header. When a class inherits code and fields from
a superclass, the fields of the class are placed after
the inherited fields, so the fields grow forward in
memory with the use of inheritance.

The bidirectional layout separates the fields and
dispatch information of the object, whereas most C++
implementations intermingle them. One advantage of
separating the dispatch information is that adjacent
entries in the dispatch header can be merged into one
entry by merging their corresponding dispatch vectors,
using the rules described in Section 3.

To ensure that method code inherited from the
superclass need not be recompiled, the bidirectional
layout makes the layout of a class compatible with that

additional

dispatch info.
additional

Cs

C

Cs

Cs fields

header Cs

Cs

header

fields

C header

C fields

C

Cs object

C object

C

fields

Figure 3: Class/superclass compatibility

of its superclass. Compatibility is achieved by nesting
the superclass layout within that of the class, as shown
in Figure 3. The dotted lines connect the layout of
the superclass, , to the corresponding portion of the
layout of the class, . The relationship of the two
classes is indicated by the vertical arrow at the left of
the figure. Because contains a portion whose layout
is compatible with , inherited method code will work
properly when passed a pointer to the portion of the
object.

In general, a layout — whether of an object,
a dispatch header, or just a dispatch vector — is
compatible with the corresponding superclass layout
if the superclass layout is embedded in the subclass
layout.

Both abstract types and classes have dispatch header
and dispatch vector layouts. Classes also provide
dispatch header data that is copied into the beginning of
objects of that class and contains pointers to the dispatch
vectors shared by all objects of that class.

An object reference is implemented by a pointer into
the dispatch header. The dispatch vector indirectly
referenced by the pointer is called the current dispatch
vector. Any object reference has some static, declared
type, although the run-time type of the object may be
any of that type’s subtypes. Regardless of the actual
run-time object type, the method indices of the current
dispatch vector agree with the method indices of the last
dispatch vector of the static type’s layout. Note that one
dispatch vector may contain methods for several types
so long as the method indices do not conflict.

3

A

B

C
A

CB

methods: a1, a2

methods: a1,a2, b

methods: a1,a2,b,c,d

methods: a1,a2,c
variables: va

variables: va, vb

vb
va

b

a1
a2

c
d

BC

object

dispatch
 vector

c

va a2
a1

AC

object

dispatch
 vector

Figure 4: Bidirectional layout example

2.1 Example

Figure 4 provides examples of bidirectional object
layouts for two classes, and . These classes
implement types and respectively. The methods
and instance variables associated with each type or class
are indicated in the diagram. For example, supports
the methods a1 and a2 of its type , and adds a private
method . It has one instance variable named va. The
figure shows the layouts of objects and the dispatch
vectors they point to. The dispatch headers for each
of these classes contain a single dispatch vector, which
is the class dispatch vector. Note that the object
is compatible with the object, which is necessary
because inherits from .

2.2 Method Indices

This section describes method dispatch and the layout
of dispatch vectors. A method call is implemented by
fetching an element of the current dispatch vector, at a
method index determined from the statically declared
type of the object. In the Theta implementation, the dis-
patch vector contains pointers to method code, leading
to the usual three-instruction assembly-language dis-
patch sequence for the MIPS architecture (most RISC
architectures are similar), shown in Figure 5.

ld t1, 0(a0) ; load dispatch vector
ld t9, (i * wordsize)(t1) ; code pointer
jalr ra, t9 ; jump to method

Figure 5: STI dispatch on the MIPS

In this code sample, the register a0 contains the
object pointer. The value i is the method index. For
any type T and method M of that type, a method index
i identifies the proper offset within the dispatch vector.
For example, in Figure 4, the method index of the
method b in type B is 2.

Method indices are densely packed, which is desir-
able because dispatch vector space is used efficiently,
yielding good cache performance. The indices of
the methods in a type dispatch vector are in the
range 0 1. In class dispatch vectors, some
method indices are negative, and indices are in the
range 1, for some and . For exam-
ple, in Figure 4, 2 and 3 for . The use of
negative method indices provides important flexibility
in constructing header layouts; the reason for this will
become clear later.

A type dispatch vector contains all the methods for
types in a supertype chain: a series of types 1 ,
where

is a supertype of

The first entries in the dispatch vector are for 1, then
for 2, and so on. This ordering ensures that a subtype
dispatch vector is compatible with any supertype in the
chain. For example, the methods of the types 1 3

in Figure 1 could be placed in one dispatch vector, in that
order. Methods are not duplicated in the dispatch vector,
so the portion of the vector contains no methods
that are derived from , where . Therefore, the
layout of the dispatch vector is uniquely defined by the
sequence of types 1 .

For a subtype dispatch vector to be compatible with
a supertype dispatch vector, the supertype method
indices must correspond to the same methods as in
the subtype. This condition implies that the supertype
dispatch vector must be embedded exactly at the start
of the subtype vector, since any offset would require
remapping its method indices.

The non-negative indices in a class dispatch vector
are arranged as in a type dispatch vector. The

4

negative indices contain methods for a series of classes
1 , where 1 inherits directly from . As

in the non-negative portion, the 1 methods are closest
to zero, and indices grow away from zero. Private
class methods are found only in the negatively-indexed
portion, but public methods derived from types may
also be there.

For example, the class dispatch vector for in
Figure 4 contains a negative portion with 1 ,

2 and a non-negative portion with 1 ,
2 .

2.3 Object References

An object reference is a pointer to a location in its
dispatch header. As described earlier, the object header
is an array of pointers to different dispatch vectors.
An object reference of type points indirectly to the
appropriate dispatch vector for . The possible pointers
to the object constitute multiple views of the object, each
view corresponding to a type or types.

When object method code is running, the reference
to the receiver object self is always a class view: a
pointer to the last dispatch vector, the class dispatch
vector. This requirement makes instance variable
accesses fast, because the class dispatch vector never
moves relative to the fields. Each instance variable
resides at a fixed offset from the self pointer in all
class views, so the variable’s value can be fetched by a
single indexed load instruction.

When a method is invoked on an object reference
pointer that is does not point to the class dispatch vector,
the pointer is adjusted by adding a small constant to
it. This pointer bumping ensures that the method code
receives the class view of the receiver. Because the
actual class of the object is not known, the proper offset
cannot be determined statically — a dynamic method
must be used.

To produce the offset dynamically, dispatch vectors
other than the class dispatch vector point to small
trampoline procedures that bump the object pointer
and then jump directly to the method code. The
offset applied in the trampoline procedure is exactly
the offset between the current dispatch vector and the
class dispatch vector. A trampoline is shared by all
objects of its class, so the total space required to store
trampolines is relatively small.

Trampoline code for the MIPS R3000 is shown in
Figure 6. In the figure, the register a0 contains the

add a0, offset ; offset reference
j method code ; jump to method

Figure 6: A trampoline procedure on the MIPS

receiver object reference. Because the code of Figure 5
jumps to these two instructions rather than directly to
the method code, the trampoline adds an additional
two-cycle penalty onto the STI dispatch cost for that
processor. A similar or lesser cost should apply on
most RISC architectures, since the trampoline jumps
directly to the actual method code.

The trampoline technique has been used by some
C++ compilers (for example, the DEC C++ compiler
cxx, though not quite as compactly as the code of
Figure 6), but seems not to be widely known. When
an offset is not required, the trampoline is omitted,
reducing the dispatch to just the three instructions of
Figure 5.

Object pointers also sometimes require bumping
when a value is viewed as a supertype of the current
static type: for example, in an assignment to a variable
of the supertype, or when the value is passed as an
argument to a method expecting a supertype. When the
dispatch vector of the supertype is incompatible with
the current dispatch vector, the pointer must be bumped
to produce a valid supertype view. The bump offset is
a small constant that can be determined statically.

Adjacent dispatch vectors in the bidirectional layout
often can be merged together to reduce the size of
the dispatch header. Ideally, all the dispatch vectors
are merged into the class dispatch vector, avoiding
trampolines and type conversions. Thus, compact
object layouts also lead to faster code.

3 Layout Rules

The following section presents the rules for constructing
compact dispatch headers for the bidirectional layout.
The goal of these rules is to generate compact layouts
for classes that are part of typical hierarchies. No
object layout scheme can generate minimal layouts
without global knowledge of the hierarchy, but as these
rules demonstrate, it is possible to do very well with
only local information so long as the class hierarchy
conforms to expectations. Even when it does not, these
rules do as well as or better than rules used by current

5

C++ compilers.
Existing C++ compilers do not handle the hierarchy

of Figure 1 well. For each level of inheritance,
they add an additional word of dispatch information,
making multiple inheritance an inefficient way to
separate interfaces and implementations. Alternative
techniques for separating inheritance and subtyping are
also hampered by extra overhead. By contrast, the rules
in this paper handle hierarchies of this form with only a
single word of dispatch information. More complicated
hierarchies involving multiple supertypes may require
more dispatch vectors for some classes, but the rules
here are never less efficient than currently used schemes.

3.1 Notation

The construction rules for the bidirectional object layout
are described here in a compact graphical notation. The
rules are essentially two-dimensional macros. This
section briefly describes the notation, and provides
some insight into the workings of object layout.

The dispatch headers and dispatch vectors of an
object can be thought of as a two-dimensional array.
The array rows are dispatch vectors and the columns
are individual methods. Each row generates a word of
per-object space overhead in the dispatch header. Since
different dispatch vectors of the object have different
lengths, the rows of the array are ragged.

Each abstract type and class in the system has a
distinct dispatch header layout. These layouts are
called type headers and class headers, respectively. The
layout of an abstract type or class is symbolized by
placing a double box around it: X

The height of the box corresponds to the number
of dispatch vectors in it, and to the amount of space
consumed by the dispatch header in each object. The
width of the box is defined as the length of the last
dispatch vector in the header. Both the number of
dispatch vectors in the box, and the length of the last
dispatch vector, are constants for a particular type or
class.

The box notation is useful because a type header
is compatible with the dispatch header of each of the
type’s supertypes, and therefore must contain it at some
offset. In the box notation, the box of the supertype
must be contained within that of the subtype.

An individual dispatch vector or a portion of one is

denoted by a simple box. The notation T , T , . . . , T1 2 n

denotes a dispatch vector that contains methods for 1,

T T

T

T1

T
Tn

= ...

T

T

1 n. . .

Figure 7: A simple type header layout rule

2, and so on, in ascending method index order. Method
pointers are not duplicated: for each , the methods
included in the dispatch vector are those for which there
is no method pointer in the 1 1 part.

The vertical abutting of boxes means that the dispatch
vectors of the lower box should be placed after the
dispatch vectors of the upper box. The horizontal
abutting of a dispatch header and a dispatch vector

means that the last dispatch vector within should
have appended to it.

This notation now can be used to express a simple but
inefficient rule for constructing type dispatch headers,
shown in Figure 7. This is not the rule actually used in
the bidirectional layout; a better rule is presented later.
Figure 7 is written as an inference rule. The antecedent,
written above the line, indicates that the abstract type

has direct supertypes 1 2 . Supertypes are
considered direct if they lie immediately above in the
type hierarchy; indirect if they lie anywhere above. The
triangles above the supertypes indicate that these types
are part of an arbitrary type hierarchy extending above
them.

The consequent, below the line, states that the layout
for consists of the concatenated layouts for all the
supertypes, except that the last dispatch vector has
been extended to include the methods of that are
not shared with 1. The mismatch in the heights of
the boxes labeled 1 and is intentional: the box
labeled represents a single dispatch vector, whereas
the box labeled 1 represents a dispatch header that
may contain several dispatch vectors. The type 1

is called the primary supertype, since its last dispatch
vector is merged with that of . The types 2 are
secondary supertypes.

6

1

2 3

4 5

6

6 = 5

4 6

=
3

3

2

5

4 6

=
1 3 5

1 3

1 2 4 6

Figure 8: Inefficient dispatch header

Although this rule is not the actual bidirectional-
layout rule, it has several instructive similarities. A
reference to an object of type points to the last
dispatch vector in the layout. Conversion from an object
of type to any of its direct supertypes requires only the
subtraction of a constant from the object pointer, which
is zero in the case of 1, since it is embedded at the end.
Conversion to an indirect supertype of requires the
subtraction of a sum of these constant offsets, which is
just a constant itself. Calls to any methods of , given
an object of static type , require only the standard
dispatch sequence, because all of the methods of are
present in the last dispatch vector.

3.2 Merging

The dispatch header rule of Section 3.1 works
correctly but sometimes wastes space. For example,
consider the type lattice shown in Figure 8. The leftmost
supertype at each branch is arbitrarily considered to be
primary, a convention that is followed throughout. The
figure demonstrates the successive application of the
rule in Section 3.1, producing the 6 layout shown, a
three-word dispatch header. Obviously, the first two
dispatch vectors are compatible and can be merged,
reducing the per-object overhead. Unfortunately, the
simple type rule does not allow this merge.

The compatibility arises because the layouts for 4

and 5 contain a common 3 piece, and can be merged.
3 is a secondary supertype of 4, and is exposed in the
4 layout. Since 3 is in a single-supertype chain above

...L =

x

S

y

T = S m

and

1.

T

S

no branches

x

y

Tand merge(L, T) =

T

L =
S

y

=
S

w

and

y

2.

T

T

S

..

.

and merge(L, T) =

may branch if S is on
primary supertype chain

Figure 9: The two merge cases for

5, the 5 layout requires no more words of dispatch
header space than does 3’s.

The fact that the 5 header can be merged into the 4

header at some offset is expressed by the predicate:
5 4 . Figure 9 provides the definition of .

Given a type and an arbitrary layout , it shows the
two cases in which the header can be merged into

. The result of the merge is compatible with , and
has the header embedded within it. In the figure, the
blocks labeled w, x, and y represent arbitrary pieces of
dispatch header, possibly including multiple dispatch
vectors. The block labeled m represents a part of a
dispatch vector. These conventions will be followed
throughout.

The first way to satisfy T is if has a
supertype whose header is exactly the same size, and
which is exposed in so that T can be merged into

the same place. For S to be exposed in means that
nothing is appended to the end of its dispatch vectors
in that layout, so that the block labeled m (the dispatch
vector entries for methods of that are not methods
of) has nothing to collide with. Then, since T is

compatible with S , the merge result is compatible
with . In order for the size of the and headers to

7

merge(T . . . T)
T = T

T

1 nTT . . .

1 n

Rule 1: Type header layout

be the same, and all its supertypes that are subtypes
of must have only one supertype. In other words,
there is a simple chain of supertypes leading up to .

The second way to satisfy T is to expose the
header of at the beginning of , and embed it at the
end of T . Since S is exposed at the beginning of

, and nothing is appended to its dispatch vectors, there
is nothing for the w portion of T to collide with, and

the two layouts can be merged. In order for S to be

located at the end of T , and all its supertypes that
are subtypes of must lie on a primary supertype chain,
since, as shown later, primary supertypes are always
aligned with the last dispatch vector in the type header.
There may be branches in the supertype structure over

, which produce the w portion of the layout. Note
that the dispatch vectors of that are shared with the
embedded header for may have methods appended to
them, which is why w extends to the right of S .

3.3 Type Header Rules

The complete rule for type header layout is shown
in Rule 1. Rule 1 looks like the simple type rule of
Figure 7, except that it attempts to merge the supertype
headers using the function merge, defined by the rules
in Figure 10. Like the rule of Figure 7, Rule 1 makes 1

the primary supertype by aligning its header with that
of .

When a type has no supertypes, the result of the
merge is considered to be empty, so the dispatch header
for such a type contains just a single dispatch vector
with the methods of , starting from index 0. With this
interpretation, Rule 1 covers all cases for type header
construction.

3.3.1 The merge function

Rule M1

T

Tmerge(T) =

Rule M2

Rule M3

merge(T . . . T)1

Tn

y

y=

=

Rule M2 does not apply

Tn

S

..

. may branch if x is empty,
S is on primary supertype chain

1 S
x

y
=

x

y
Tn=1 nmerge(T . . . T)

1 nmerge(T . . . T)

merge(T . . . T)

Figure 10: Merge rules

The function merge takes a list of types and produces a
layout that merges the headers of all the types. There
are three cases that the function considers, described in
the rules M1, M2, and M3 of Figure 10.

Rule M1 states the obvious base case: merging a
single type header yields the type header itself.

Rule M2 actually performs a merge. The antecedent
to M2 captures exactly the merge cases described in
Figure 9, stating that

Tn merge T1 Tn 1

If x is non-empty, Rule M2 requires that there be no
branches along the path from to , matching the
antecedent to merge case 1. If x is empty, Rule M2

8

requires only that be a primary supertype of ,
matching the antecedent to merge case 2. The merge
result from Rule M2 similarly matches the results of the
two merge cases. In case 1, using Rule M2 to merge
in does not increase the size of the type header. In
case 2, the size of the type header increases, but only
by the size difference of Tn and S .

If rules M1 and M2 fail, Rule M3 must be used: as in
Figure 7, append Tn at the start of the previous merge.
This rule increases the size of the type header by the
height of Tn , so Rule M2 is always preferable when
it can be applied. The rules for merge are complete,
because M3 can always be applied in the case when M2
cannot.

3.3.2 Type Header Rule Correctness

For the merge rules to be correct, type headers in a
primary supertype chain must be aligned with each
other. This alignment is guaranteed because rules M2
and M3 keep the result of the previous merge aligned
with the last word of the result merge.

Also, embedded type headers must be located at a
known offset from the end of the type header so that
supertype conversion works properly; Rule M1 clearly
preserves this property. Rule M3 keeps all embedded
type headers in y at the same offset, and all embedded
type headers in are offset by the height of y, which
is a known constant. Therefore, M3 preserves the
property. Rule M2 is more complex. Clearly, M2
keeps any embedded headers in S and y at the same
offset. Now, consider the embedded information in
x. Rule M2 can satisfy either of the merge cases of
Figure 9. If it satisfies case 1, then Tn has the same

height as S , so the dispatch information in x is located
at the same offset in the resulting merge. If Rule M2
satisfies case 2, then Tn may be larger than S , but
x is empty. Inductively, the known-offset property is
preserved by the combination of Rule 1 and the merge
rules.

3.3.3 Supertype Ordering

The order in which the supertypes are merged is
important, because it may determine whether Rule M2
can be applied. The indices on the supertypes in Rule 1
can be assigned in an order that allows as much merging
as possible. The current Theta implementation does not
attempt to find an optimal ordering, since the number
of supertypes is usually small. It successively picks

=

C

C C T

T

Rule 2: A non-inheriting class

supertypes and places them in an ordered list for merge
using the following heuristic. At each iteration, it
preferentially picks a supertype whose header can be
merged into the minimal number of unpicked supertype
headers. Thus, it avoids adding a header until it has
added any headers that it can be merged into. Usually,
there is a supertype that cannot be merged into any other
supertype headers. It breaks ties by picking a supertype
that can be merged by Rule M2 into the layout of the
currently picked supertypes. The picked supertype is
appended to the end of the ordered list, and the process
repeats.

3.4 Class Header Rules

The advantages of the object layout described here
are most apparent for a full class header. The kind
of type lattice shown in Figure 8 is uncommon for
abstract types, but similar hierarchies are frequent in
a system with separate subtyping and inheritance, as
shown earlier in Figure 1. Merge optimizations like that
in Section 3.3 are correspondingly more important, and
are used by the bidirectional layout to produce compact
class headers.

In Theta, a class implements either a single type or
none; it inherits either from a single superclass or from
none. Classes that do not implement a type are useful
because they can be inherited without fear of damaging
existing objects. They can also be used for private data
structures within another implementation.

There are several cases to be considered when
constructing class headers, and the following sections
will enumerate them and provide the construction rules.

3.4.1 Non-Inheriting Classes

The simplest case to consider is a class that does not
inherit from any superclass, shown in Rule 2. This
rule optimizes the header of a non-inheriting class

9

may branch if x is empty,
 S on primary supertype chain.

C

TCs

.
.
.

=

=

S

C

C y

T

x

y

x

SCs

Rule 3: Merging type headers into class headers

by making its class dispatch vector compatible with the
type it implements, .

The horizontal abutting of the two boxes, with T
on the right, indicates that the methods of that are
not found in (the private methods) are prepended to
the last type dispatch vector of . The indices of the

methods do not change; the methods of are added
with negative indices starting from -1.

Note that if has only single supertypes above it
in the hierarchy (a simple hierarchy), then the whole
class header for will consume only a single word per
object.

If a class does not inherit from a superclass or
implement an abstract type, Rule 2 also applies. The

T layout is considered to be empty, so the dispatch
header of such a class contains a single dispatch vector
with only negatively-indexed methods.

3.4.2 Merging Type and Class Headers

The key to the efficiency of the bidirectional layout
is the merging of type and class headers in type/class
lattices, which is described by Rule 3. This rule
computes the layout of a class that implements type

and inherits from class . The header of must
contain an exposed header that is compatible
with. The header is formed by extending the
class dispatch vector backward, and the embedded

T

C

Cs

Rules 2 and 3 do not apply

T

CsCC =

Rule 4: Default class header rule

header forward. The backward extension of the
class dispatch vector makes the layout compatible with

, and the forward extension makes it compatible with
. Both extensions can affect the same dispatch vector,

which is made possible because the backward extension
of the class dispatch vector cannot collide with the
forward extension of .

As in the merge cases of Figure 9, the supertype
must either be on a simple supertype chain above ,

or, if it is exposed at the start of Cs (i.e. x is empty),
on a primary supertype chain above . Thus, Rule 3 is
analogous to the earlier Rule M2.

3.4.3 The Default Rule

Rule 4 guarantees that the class header construction
rules are complete. In the rule, is a class that
implements the abstract type , and inherits from the
class . The header for is formed by concatenating
the headers of and , without merging. The methods
of that are not already in the the class dispatch vector
of are prepended to the negative portion of the class
dispatch vector. Rule 4 corresponds to merge Rule M3
and the simple type header layout policy of Figure 7:
like a C++ layout, it tends to make the object dispatch
overhead larger with each level of hierarchy.

When Rule 4 is applied to a class that does not
implement an abstract type, the T portion of the
layout is considered to be empty. To produce the class
header for , it just prepends the new methods.

When is a supertype of the type that
implements, the Theta implementation performs an
optimization not shown in the diagram. Since T is
already embedded in the header, there is no need to

concatenate T to Cs to create the header. The new
methods are simply prepended to the class dispatch

vector.

10

3.4.4 Combining the Rules

When Rule 3 applies, its advantage over Rule 4 is that
it does not increase the size of the dispatch header with
each level of hierarchy. Type/class lattices like those
depicted in Figure 1 require only rules 1, 2, and 3, and
all applications of rule 1 use merge rules M1 and M2.
None of these rules cause the header to grow, so the
class headers of all classes in a simple type/class lattice
occupy only a single word. In fact, only a single word
of dispatch information is required for a class as long
as the following two conditions are met:

1. No types in the hierarchy above the class have
multiple supertypes.

2. Either:

(a) The type implemented by a class is a subtype of
the type implemented by its superclass, allowing
merging by Rule 3, or

(b) The type implemented by a class is a supertype of
the type implemented by its superclass, allowing
merging by Rule 4 with optimization.

This result is a significant improvement on existing
techniques.

Negative method indices allow smaller headers.
Without them, reasonable merge schemes can be
defined [Mye94], but the size of headers in a type/class
lattice is two words rather than one. The two dispatch
vectors correspond to the negative and non-negative
portions of the class dispatch vector.

3.4.5 Class Header Rule Correctness

Rules 2 through 4 are both complete and correct, which
again can be shown inductively. For completeness,
consider all possible classes. If the class does not
implement a type, its header is defined by Rule 4. If the
class does not inherit from a superclass, its header is
defined by Rule 2. If the class both implements a type
and inherits from a class, its header is defined by either
Rule 3 or Rule 4, depending on whether merging is
possible. Therefore, all class headers are constructible.

For correctness, embedded type and class headers
must be found at known offsets from the class dispatch
vector. Rules 2 and 4 clearly preserve this property.
Rule 3 operates almost identically to merge rule M2,
and the correctness arguments from Section 3.3.2 again
suffice.

0

1

2

3

4

0

1

2

3

4

Figure 11: Some complex types and classes

C C C CT0 0 1 2 3

C fields
0

C fields1

C fields2

C fields3

T T0 1

T T T0 1 2

T T T0 1 4

T T T T0 1 2 3

C

T0T1T4

3 2 1 0C C C T0 T2 T3

C fields

C fields

C fields

0

1

2

3

Usual C++ LayoutBidirectional Layout

T1

C fields

Figure 12: Bidirectional and C++ layouts for 3

3.5 Examples

The success of these dispatch layout rules is illustrated
by the layouts for the classes in the complex hierarchy
of Figure 11. Even though their layouts are computed
with only local knowledge of the hierarchy, all the
classes except 3 require only a single dispatch vector.
As shown in Figure 12, 3 has just two dispatch
vectors in the bidirectional layout, whereas it has five
in conventional layouts. The vertical center line in the
dispatch vectors for the bidirectional layout represents
the separation between the negative and positively-
indexed methods. Contrast these header sizes with
conventional C++ layouts: classes 1 through 4 have
2, 3, 5, and 2 dispatch vectors, respectively. The
disparity between the schemes increases with deeper
hierarchies.

11

4 Multiple Inheritance

The material so far has been in the context of Theta, a
language that does not allow multiple inheritance of
code and instance variables. However, this section
shows how to extend the bidirectional layout rules
to support true multiple implementation inheritance.
There are two approaches to supporting multiple
inheritance, both of which generate alternate versions
of method code inherited from some superclasses.

4.1 Recompilation

If the language allows only the instance variables of
self to be accessed, multiple inheritance is easily
implemented for a class. One of the superclasses is
designated as the primary superclass; code is shared
only with this class. The primary superclass is handled
exactly as described earlier for the superclass. The
secondary superclasses are treated essentially as if they
were secondary supertypes, except that their fields are
appended to the object layout along with the fields of
the class.

Since the secondary superclass fields do not begin
after the class dispatch vector, the offset to them is
different than in the superclass. A new version of
secondary superclass methods is compiled or linked
to use the correct offset for this class.

Recompilation is easy, and produces compact objects
with fast dispatching. However, it does not work
if instance variables of objects other than self can
be accessed, because the code accessing the variable
cannot determine the proper field offset. Also, this
solution causes some code duplication, since a class is
recompiled for each distinct field offset used.

4.2 Dynamic Field Offsets

A more flexible technique for supporting multiple
inheritance is to determine the location of fields
dynamically. This technique produces at most two
versions of method code, and allows access to instance
variables of objects other than self.

The location of the fields is provided by placing
the correct field offset in the class dispatch vector,
exactly as if the offset were a private method pointer.
Many implementations of multiple inheritance have
used intra-object pointers for this purpose; however,
dynamic field offsets take no space per object, and
are usually just as fast. Since dispatch vectors are

ld t1, 0(a0) ; load dispatch vector
ld t2, fields(t1) ; load field offset
add t3, a0, t2 ; start of fields

Figure 13: Field access setup code

shared, field offset loads are less likely than intra-object
pointers to cause cache misses. The MIPS code to place
the starting address of the fields into the register t3 is
shown in Figure 13. Note that this computation may be
amortized over all field accesses to a particular object
within a method call.

Dynamic field offsets can be used to extend the
recompilation scheme of Section 4.1 so that it supports
accesses to instance variables of objects other than
self. These accesses use the dynamic field offset,
since the correct field offset cannot be determined
statically. When instance variables of self are
accessed, the correct offset is known, as before.

A more space-efficient technique is for all code to
access instance variables using the field offset. This
approach has the advantage that all class methods can be
inherited without recompilation; it has the disadvantage
that accessing the instance variables of self requires
the code of Figure 13.

A reasonable compromise is to generate at most two
versions of the class code. In both versions of the
code, instance variables of objects other than self are
accessed through the dynamic field offset. The versions
differ in how they access the instance variables of self.

The first, fast version is used for objects of the class
itself and for subclasses that inherit from the class in
a primary superclass chain. Since the field offset is
known statically, instance variables are accessed by an
indexed load, as in the basic bidirectional scheme.

The second, generic version accesses all instance
variables through the dynamic field offset code of
Figure 13, and is suitable for inheritance as a secondary
superclass method. This second version is particularly
appropriate for mix-in classes.

5 Method Signature Refinement

The most general subtype rules allow subtypes to widen
argument types and narrow result types [Car84]. This
process is sometimes called method signature refine-
ment. Because implementing these rules efficiently is

12

difficult, separately-compiled languages like C++ and
Modula-3 have a more restrictive subtype rule: they
require that argument and return types stay the same
in subtype methods. However, the Theta implemen-
tation demonstrates that refined method signatures can
be efficiently implemented even in separately-compiled
languages.

The subtype rules are difficult to implement because
objects have multiple views (see Section 2.3), a
necessary feature of systems with fast dispatch and
separate compilation, such as Theta or C++. Multiple
views are also useful for treating primitive values
(e.g., integers) as first-class objects in a system with
a universal supertype.

To see why multiple object views make signature
refinement problematic, consider two abstract types
and , where is a secondary supertype of . An
offset is required to convert between the and
views. Suppose that the supertype has a method
identity that returns a , but that in , identity
is declared to return a . This hierarchy is sound, but
creates practical implementation difficulties. Let x be
a variable of declared type that actually refers to a

object. Calling x.identity() yields a , but the
caller expects a — a different view of the object.

The solution to the puzzle is straightforward: the
compiler assigns multiple method indices to the
method, one for every type with a distinct signature
for that method. Let be the method index of
identity in . Because declares a new signature
for identity, it introduces a new method index for
calls that use the new signature. The compiler sends
method calls to the appropriate method index based on
the static type of the receiver object, so the presence
of two distinct dispatch entries is never visible to the
programmer.

Classes that implement do not need to know about
and only have a entry, so the locality principle

is preserved. Classes that implement are really
implementing the version of the method, so the
entry points to the method code. The entry points to
automatically generated trampoline procedure, whose
code bumps any arguments and calls the version of
the method, then bumps the return values appropriately.
This trampoline makes the implementation of the
method look as if it had the signature. On the MIPS
R3000, the bumping of arguments and return values
imposes a one cycle overhead per adjusted value, since

Overhead Bidirectional C++
1 44 23
2 1 17
3 0 4
4 0 1

Table 1: Theta library object overheads

all adjustments are constant additions. In many cases,
a trampoline procedure would be required anyway to
bump self, and the two trampolines can be merged.

Note that a single dispatch vector can contain
multiple versions of the same method, if no change
of view is required among the types supporting the
method, and its signature differs in them. This situation
is not a problem, since the method index is chosen
according to the static type of the receiver object.

This technique applies to almost any multiple-view
system with inheritance, such as the bidirectional object
layout. It would also allow efficient implementation
of refined method signatures in C++ if the language
permitted.

6 Empirical Results

The bidirectional layout efficiently handles hierarchies
with separation of inheritance and subtyping. Two
class libraries were examined to determine how the
bidirectional layout works in practice and whether
existing code conforms to the assumptions that it is
based on.

6.1 Theta Library

The standard Theta library comprises 16 classes and
19 abstract types, and several other small libraries are
under development. Considering the two largest li-
braries, one implementing the OO7 database bench-
mark [CDN93], and another implementing the Labbase
database [RSG95], there are a total of 51 abstract types
and 45 classes. Table 1 shows the number of words of
per-object dispatch overhead incurred by these classes
with the bidirectional layout and with a standard C++
layout. Each entry in the table shows the number of
classes that have a particular number of words of dis-
patch overhead. Of these classes, only one requires
more than a single dispatch vector with the bidirec-
tional layout. It occupies a position in the hierarchy
very similar to 3 in Figure 11, and has two dispatch

13

Overhead Bidirectional C++
1 399 372
2 17 24
3 8 17
4 2 6
5 0 3
6 0 1
7 0 3

Table 2: InterViews 3.1 object overheads

vectors.
The per-object space overhead is clearly lower for

the bidirectional layout. Per-class space overhead is
also less: the bidirectional layouts have a total of 46
dispatch vectors, compared to 73 in the C++ layout. The
bidirectional dispatch vectors are larger on the average
than the C++ dispatch vectors, but they do not repeat
any information that is not also repeated by the C++
dispatch vectors. Since only one trampoline routine
needs to be generated for the bidirectional layout, total
space usage is smaller. However, per-class space usage
is less important than per-object space usage, since the
total number of objects in any significant program is
likely to be much larger than the total number of classes
in use.

6.2 InterViews Library

An example of larger-scale object-oriented program-
ming is the InterViews 3.1 toolkit [LCV88], written in
C++ with multiple inheritance. Including component
libraries, it comprises about 426 public classes. It has
evolved along with C++, so the code contains some
historical artifacts: most of these classes are written in
a single-inheritance style with no separation of inher-
itance and subtyping, and have only a single word of
dispatch information even with the C++ layout. Never-
theless, perusal of these classes reveals that the bidirec-
tional layout would make many of them more efficient,
using the multiple-inheritance extension of Section 4.2.
The results are shown in Table 2.

6.2.1 Space Usage

With the bidirectional layout, every class is as compact
as in the layouts generated by the DEC C++ compiler
cxx (other compilers are similar), and 46 classes are
more compact, some by as much as 4 words per object.
Additional classes would be more compact if the uses

of inheritance were “virtual” — the current classes
sacrifice inheritability for performance, so the results
here are generous to C++.

The total number of dispatch vectors is 465 for
the bidirectional layout, and 537 for C++. Assuming
that dispatch vectors all contain words, 66 tram-
poline procedures must be generated for the bidirec-
tional scheme versus 111 for C++ (Non-trampoline
techniques require even more space). The total space
used by shared dispatch information in the two lay-
out schemes is 597 words for the bidirectional layout
and 759 words for the C++ layout. Again, per-object
space overhead is likely to dominate the dispatch vector
overhead in real programs.

6.2.2 InterViews Abstraction Techniques

The attempt to separate inheritance from subtyping
is a major source of inefficiency in the InterViews
classes. About 30 classes (mostly members of the
core InterViews library) hide their implementation in
a pointer to a private class. This mechanism is actually
less powerful than the separation provided by Theta.
The use of private implementation classes suggests that
the hierarchy of Figure 1 is common or at least desirable,
as assumed.

Unfortunately, the private implementation pointer
imposes even more space overhead than multiple
inheritance. In addition to an extra object pointer at
every level of inheritance, the fragmentation of the
object into two pieces imposes at least another word
of overhead per object with commonly-used memory
allocators. This fragmentation overhead has not been
added to Table 2.

It is interesting to note that the InterViews classes use
multiple inheritance mostly for abstraction. Among
the ten uses of multiple inheritance in the public
InterViews classes, there is only one use of true multiple
inheritance; the rest permit one class to implement
several unrelated interfaces. For example, the classes
for which the bidirectional layout generates a three-
word dispatch header all implement three unrelated
interfaces: Handler, MonoGlyph, and Observer.
In a separate-compilation environment where densely-
packed method indices are compiled into the code, a
three-word dispatch header is minimal for these classes.

14

7 Related Work

The bidirectional layout can be seen as a way of
tuning the basic C++ object layout approach [Str87] to
work well with current architectures and programming
practice. Almost all the optimizations defined here
can be applied to C++ compilers in a straightforward
manner.

Much work on object layout has focused on assigning
non-conflicting indices so each class has a single
dispatch vector [DMSV89]. The resulting dispatch
vectors may be sparse and contain multiple holes, so
compressing them is a major concern [PW90, Dri93].

There are two important problems with these
techniques: first, they are not compatible with separate
compilation. Adding a new class or classes to the
system can require recomputing method indices for
other portions of the system, since the entire type
hierarchy must be analyzed to select method indices.
Second, in a large system, the complex (usually
coloring-based) algorithms can require a lot of time;
times on the order of an hour have been reported for
the Smalltalk-80 hierarchy [AR92]. For many systems,
these techniques are impractical, and a scheme based
on fast local rules is preferable.

Rose [Ros88] investigates how to perform the method
dispatch operation and settles on fat dispatch tables,
where method code is placed directly in the dispatch
vector. Fat dispatch vectors will work with bidirectional
layout, but seem unlikely to improve on the standard
dispatch sequence — the sequences usually take the
same amount of time, and fat entries take a performance
hit when the method is too large to fit, because an extra
jump instruction is required. In addition, fat entries
may hurt cache performance.

The implementation techniques for multiple inher-
itance described in Section 4 involve compiling dif-
ferent versions of method code for different inheriting
contexts, a technique similar to the production of spe-
cialized code in SELF [CUL89, Cha92] — though the
technique is used there to solve a more general problem,
since SELF is not statically typed. In the SELF imple-
mentation, different versions of the code are produced
for every inheriting class, so code sharing is minimal
and code duplication can become a problem. The two
techniques suggested in Section 4 preserve code sharing
better. The more general technique produces at most
two versions of the inherited code, and thus does not

suffer from excessive code duplication.

8 Conclusions

This paper has presented the bidirectional object
layout, a new layout scheme that produces compact
objects with fast method dispatch. The scheme
works for statically typed, separately compiled object-
oriented languages with explicit subtype declarations,
an important category that previous object layout work
has not fully explored. The rules for constructing new
objects depend only on local information about the
type hierarchy, so existing object layouts are not invali-
dated by extensions to the hierarchy. Therefore, the
bidirectional layout scheme scales better to large-scale
software development than other schemes requiring a
global type analysis phase.

The object layouts produced by this scheme are
as compact or more compact than those produced by
current compilers, and dispatch is as fast or faster
on stock hardware. Typically, the dispatch infor-
mation is compacted into a single dispatch vector,
and method dispatch is as fast as a single-inheritance
implementation of C++.

There are two key insights behind the scheme: first,
the three different uses of multiple inheritance are
treated differently in the scheme, allowing dispatch
information to be compacted in ways that are not
possible for full multiple inheritance. Second, the
object layout is reordered, separating the dispatch
information from the fields of the object. The dispatch
information can then be merged by the set of formal
rules that have been presented here.

Perusal of existing code shows that existing C++
code also separates the functionalities of subtyping,
abstraction, and inheritance, and that the bidirectional
layout will support many existing hierarchies more
efficiently.

Finally, the paper has shown how full method
subtyping rules with signature refinement can be
supported efficiently in the bidirectional scheme and
in most existing multiple-view systems.

Acknowledgements

I would like to thank Kavita Bala, Miguel Castro,
Dawson Engler, Umesh Maheshwari, and the referees
for their excellent comments on this paper, and

15

especially Barbara Liskov for her support and advice
on this paper and the thesis that led to it.

References
[AR92] Pascal André and Jean-Claude Royer. Optimiz-

ing method search with lookup caches and in-
cremental coloring. In OOPSLA ’92 Proceed-
ings, pages 110–126, Vancouver, BC, Canada,
October 1992.

[Car84] Luca Cardelli. A semantics of multiple
inheritance. In Semantics of Data Types, LNCS
173, pages 51–68. Springer-Verlag, 1984.

[CDN93] Michael J. Carey, David J. DeWitt, and Jef-
frey F. Naughton. The OO7 benchmark. In
Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 12–21, Wash-
ington, DC, May 1993.

[Cha92] Craig Chambers. The Design and Implementa-
tion of the SELF Compiler, an Optimizing Com-
piler for Object-Oriented Programming Lan-
guages. PhD thesis, Stanford University De-
partment of Computer Science, Stanford, CA,
March 1992.

[CUL89] Craig Chambers, David Ungar, and Elgin
Lee. An efficient implementation of SELF,
a dynamically-typed object-oriented language
based on prototypes. In OOPSLA ’89 Confer-
ence Proceedings, pages 49–70, New Orleans,
LA, October 1989. Published as SIGPLAN No-
tices 24(10), October, 1989. Also published in
Lisp and Symbolic Computation 4(3), Kluwer
Academic Publishers, June, 1991.

[DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and
Andrew C. Myers. Subtypes vs. where clauses:
Constraining parametric polymorphism. In
OOPSLA ’95 Proceedings, Austin, TX, October
1995.

[DMSV89] R. Dixon, T. McKee, P. Schweitzer, and
M. Vaughan. A fast method dispatcher for
compiled languages with multiple inheritance.
In OOPSLA ’89 Conference Proceedings, pages
211–214, New Orleans, LA, October 1989.
Published as SIGPLAN Notices 24(10),October,
1989.

[Dri93] Karel Driesen. Selector table indexing & sparse
arrays. In OOPSLA ’93 Proceedings, pages
259–270, Washington, DC, September 1993.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[LCD 94] Barbara Liskov, Dorothy Curtis,Mark Day, San-
jay Ghemawat, Robert Gruber, Paul Johnson,
and Andrew C. Myers. Theta Reference Manual.
Programming Methodology Group Memo 88,
MIT Lab for Computer Science, Cambridge,
MA, February 1994. Also available at
http://www.pmg.lcs.mit.edu/
papers/thetaref/.

[LCV88] Mark Linton, Paul Calder, and John Vlissides.
InterViews: A C++ Graphical Interface Toolkit.
Technical Report 358, Stanford Computer Sys-
tems Laboratory, July 1988.

[Mye94] Andrew C. Myers. Fast Object Operations in
a Persistent Programming System. Technical
Report MIT/LCS/TR-599, MIT Laboratory for
Computer Science, Cambridge, MA, January
1994. Master’s thesis.

[Nel91] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice-Hall, 1991.

[PW90] William Pugh and Grant Weddell. Two-
directional record layout for multiple inheri-
tance. In Proceedings of the SIGPLAN ’90 Con-
ference on Programming Language Design and
Implementation, pages 85–91, White Plains,
NY, June 1990. Published as SIGPLAN Notices
25(6), June, 1990.

[Ros88] John R. Rose. Fast dispatch mechanisms for
stock hardware. In OOPSLA ’88 Conference
Proceedings, pages 27–35, San Diego, CA,
October 1988. Published as SIGPLAN Notices
23(11), November, 1988.

[RSG95] S. Rozen, L. Stein, and N. Goodman. Labbase:
A database to manage laboratory data in a
large-scale genome-mapping project. IEEE
Computers in Medicine and Biology, 1995. To
appear.

[Str87] Bjarne Stroustrup. Multiple inheritance for
C++. In Proceedings of the Spring ’87 Euro-
pean Unix Systems Users’s Group Conference,
Helsinki, May 1987.

16

