
To appear in Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, December 1994.

Disconnected Operation in the Thor
Object-Oriented Database System

Robert Gruber Frans Kaashoek Barbara Liskov Liuba Shrira

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

This paper discusses issues raised by providing discon-
nected operation in the Thor object-oriented database sys-
tem. Disconnected operation in such a system poses new
challenges because of the small size of objects, the richness
and complexity of their interconnections, the huge number
of them, and the fact that they are accessed within atomic
transactions. We propose three techniques to address these
challenges: (1) using the database query language for
hoarding; (2) using dependent commits to tentatively com-
mit transactions at the disconnected client; (3) using the
high-level semantic of objects to avoid transaction aborts.

1 Introduction

Thor is a distributed object-oriented database (OODB) sys-
tem that provides a persistent universe of typed, encap-
sulated objects. Computations take place within atomic
transactions that typically make use of many objects. Ap-

Authors’ addresses: gruber, kaashoek, liskov, liuba @lcs.mit.edu.
MIT Laboratory of Computer Science, 545 Technology Square, Cam-
bridge, MA 02139.

This work was supported in part by the Advanced Research Projects
Agency under contracts N00014-91-J-4136 and N00014-94-1-0985.
(This author is partially supported by an NSF National Young Inves-
tigator award.) The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. government.

plications interact with Thor by invoking object methods
and requesting transaction commits.

The implementation of Thor is distributed. Persistent
objects reside at server machines; applications run at client
machines. Copies of persistent objects are cached on clients
to reduce delay for applications and offload work from
servers.

The Thor implementation exists (although it is still un-
der development) but does not support mobile clients. This
note discusses issues that must be addressed to support such
clients. In particular, it looks at disconnected operation in
Thor. For our discussion we will assume mobile clients
are relatively powerful computers (e.g., laptops). We be-
lieve a system like Thor raises new issues for disconnection
because:

1. An OODB is structured differently from a file sys-
tem. Objects are small compared to files: we expect
an average object size of under 100 bytes. (This fig-
ure is based on analysis of object sizes in the OO7
benchmark [2].) Object interconnections are compli-
cated and irregular, while file system name spaces are
simple and highly structured. Finally, the number of
objects managed by a database will be much larger
than the number of files managed by a file system.

2. An OODB is accessed differently than a file system.
Objects are accessed by navigation and queries; ac-
cesses will often be hard to predict, with later objects
of interest determined by examination of earlier ones.
In addition, computations run as atomic transactions,
which provide both serializability and persistence of
effect.

The remainder of this note discusses how these proper-
ties affect disconnected operation and proposes three tech-
niques to address them: (1) when preparing for disconnec-
tion, use the database query language to hoard objects; (2)
while in disconnected operation, use dependent commits

1

to tentatively commit transactions; (3) use the high-level
semantics of objects to increase the likelihood of commit
in general and at reconnect. We argue that these ideas com-
bined with Thor’s distributed architecture will provide a
viable approach to handling mobile clients in an OODB.

An important point of this paper is that existing concepts
from databases can be very helpful: our three main propos-
als all involve a novel application of earlier database work
to this new domain.

2 Thor

Thor and its implementation are described in [17]. This
section gives a brief overview of those aspects of the system
that are relevant for disconnected operation.

Thor provides highly-reliable and highly-available stor-
age for persistent objects at server machines. There can
be many servers; at a given time, each persistent object
belongs to a particular server (objects can be migrated to a
new server). Objects are clustered at servers, so that most
references go to objects at the same server, but they can
contain references to objects at other servers.

Users of Thor run at client machines. A portion of Thor
called the FE (for “frontend”) runs on each client machine.
The FE maintains a cache containing copies of persistent
objects; it carries out client requests and interacts with the
servers only to handle cache misses (in which case the FE
fetches the needed object from its server and prefetches a
number of related objects [5]) and transaction commits.

Transactions are synchronized using optimistic concur-
rency control (see [1]); we provide some details here since
they are relevant to disconnected operation. While a trans-
action is running, the FE keeps track of which persistent
objects it uses (reads and writes). When the client requests
a commit, the FE communicates with a server (one contain-
ing some used objects) that acts as coordinator of a 2-phase
commit; servers where other used objects reside act as par-
ticipants. Participants validate the transaction in phase 1; a
transaction is validated provided (1) it has not read an old
version of some object, and (2) it has not modified an object
read by a transaction that would be serialized after it and
that has already committed or prepared. If all participants
validate the transaction, the coordinator commits it; oth-
erwise the transaction aborts. The coordinator records its
decision on stable storage and notifies the client; it informs
participants of the decision in the background.

When a participant finds out about a commit, it installs
new states for the modified objects (this does not require
an immediate disk I/O [10, 21]) and sends invalidation
messages to FEs that might contain copies of modified ob-
jects. An FE discards invalidated objects from its cache,
aborts its current transaction if it used an invalidated object,

and acknowledges the invalidation. Note that invalidation
messages are just an optimization: they avoid aborts by
removing invalid information from FE caches, and cause
early aborts of transactions that could not commit. If inval-
idation messages are not delivered, the system can still run
correctly, since persistent objects are modified only when
transactions commit, and transactions that used invalid ob-
jects will abort.

Validation is carried out without the use of version num-
bers: objects do not contain any concurrency control state.
This decision significantly reduces space overhead for our
small objects; in essence, we record concurrencycontrol in-
formation only for objects that might cause conflicts, while
avoiding such information for the bulk of objects. Val-
idation makes use of FE-tables, maintained by servers,
that track objects cached at client FEs. (FE-tables are
maintained at a coarse granularity and, assuming objects
are well-clustered within a server, will not be very large.
For example, a few thousand words should be sufficient
to record information about an FE with 100,000 objects in
its cache.) A server uses the FE-tables to determine what
invalidation messages to send. It also marks invalidated
objects in the table and records this information on stable
storage (in the commit record for the committing trans-
action). Objects are unmarked on receipt of invalidation-
acknowledgements from FEs. Validation of a transaction
succeeds only if none of the objects it used are marked as
invalidated in the table for its FE.

The Thor architecture is well-suited to disconnected
client operation. A transaction that runs at one FE can
fetch and commit without the need for servers to communi-
cate with other FE’s (as would be the case, e.g., if a locking
technique such as call-back locking [3] were in use). This
is good since other FE’s might be disconnected at the time.
While it is true that lists of invalid objects will grow during
disconnect, these lists will still be much smaller than the
space required to keep concurrency control information for
every object.

3 Disconnected Operation

We now consider the problems that would arise if the client
machine were disconnected from the server machine. We
assume a total disconnect in which the client is unable to
communicate with the server; we discuss partial disconnect
in Section 4.

3.1 Getting the Right Objects in the Cache

While a client is disconnected, it can continue to run pro-
vided needed objects are in its cache, but will be unable
to make progress (at least in doing that particular task) if

2

objects are missing. Therefore, the first issue is: how to
ensure that the right objects are in the cache prior to dis-
connect. We propose to use “hoarding queries” for this
purpose.

The Coda system augments the usual LRU cache policy
with user-supplied “hoarding profiles” to ensure that the
right files are in a user’s client cache on disconnect [22];
without such a mechanism, users would be unable to work
on anything but their most recently accessed files while
disconnected. Coda’s hoarding profile language is tailored
to the naming structure of a file system (path names with
wildcards are used to name files and/or entire subtrees to
be prefetched). For an OODB, a richer language that can
handle complex object interconnections is necessary. De-
scriptions of what to hoard should be written abstractly, in
terms of object methods, rather than concretely; for exam-
ple, we want to talk about the “document” of an atomic part
(in the OO7 database) rather than its second pointer.

Fortunately, OODBs already have a good language for
describing collections of objects, namely object-oriented
query languages. These languages are similar to relational
query languages, but have been extended to include object
navigation via the traversal of representation-exposing path
expressions, e.g., x.project.manager.salary, or,
preferably, the invocation of arbitrary methods or func-
tions, e.g., x.manager salary(). Current commercial
OODBs support efficient index-based associative access for
path expressions [6, 7, 16, 18, 20], while future OODBs
should support indexes over methods and functions [14].
Such query languages are a good way to describe hoarding
profiles, supporting both simple requests (e.g., prefetch all
sections of the paper I am working on) and complex ones.
It is likely that queries useful for hoarding will be formu-
lated by users during normal interaction with Thor; these
queries can be saved in the database, avoiding the need to
reformulate them later.

In addition to using queries to prefetch objects into a
client cache, the result of a query can be stored at the client
as an independent snapshot of the current database state.
A snapshot is a volatile copy of the object state returned
by the query; once a snapshot is generated, objects in the
snapshot have no connection to objects in the database: the
snapshot does not track any further updates to the database,
and furthermore updates to objects in the snapshot are not
propagated back to the server, as happens with updates to
cached database objects. We discuss why snapshots are
important in the following sections.

Users may not know the full set of objects used by a
particular application, or may not know how to formulate
a query that describes these objects, making it impossible
for them to write a hoarding query that ensures the appli-
cation will be able to run while disconnected. To solve this
problem it will probably be necessary to provide a trac-

ing tool that captures the reference pattern that occurs over
one or more runs of an application. The set of object ref-
erences captured in this way can be stored and later used
in a hoarding query. Such a tool has been proposed for
object prefetching [4]; it is similar to the file tracing tool
provided by Coda [22] that helps users determine which
“hidden files” are used by an application so that they can
be included in their hoarding profiles. However, an OODB
trace can include not only object identifiers but descriptions
of the queries used during the trace run. Such queries can
be replayed as part of a later hoarding query, making it
more likely that the right set of objects is prefetched.

3.2 Running While Disconnected

There are two main problems that arise while running dis-
connected: what to do if there is a cache miss, and what to
do about transaction commits. We propose to make these
problems visible to users via cache miss exceptions and
tentative commits. Our guiding philosophy here is that a
change in the semantics of an operation ought to be visible
to the user, and the user ought to have control over how to
proceed.

In the current Thor implementation, an FE communi-
cates with a server when there is a miss and shuts down
if communication fails. Clearly a different approach is
needed for disconnected operation. Our solution is to have
the method call (made by the client application) that led
to the cache miss fail with an exception indicating that a
cache miss was the problem. (All method calls to Thor can
terminate with an exception.) The application can respond
appropriately, e.g., by aborting the current transaction and
suspending with a message to the user indicating that it
cannot proceed until a reconnect occurs. This would al-
low the user to start up another task in the meantime. The
user should be able to request that the application be au-
tomatically resumed at reconnect time; this request could
optionally include a hoarding query that should be run on
reconnect before resuming the application.

Now let’s consider transaction commit. During discon-
nected operation, a transaction that uses database objects
cannot be committed, since this requires communication
with Thor servers. Instead we provide a different kind
of action, a “tentative commit”, which records an inten-
tion to commit and allows the client to start up the next
transaction. Having tentative commits leads to “dependent
commits” [19]: transaction T2 depends on T1 if it uses
objects modified by T1 because if T1 ultimately aborts, so
must T2. While Thor avoids the possibility of such “cas-
caded aborts” during normal operation, it cannot do this for
a sequence of tentative commits during disconnect.

To process a tentative commit, an FE must remember
all objects read and written by the transaction; it uses this

3

information to commit the transaction at reconnect, and
also to compute dependencies. If the disconnect lasts a
long time, the tentative commit log may grow very large.
We present two approaches to controlling log size, which
is important both for saving space at the client and for
reducing the cost of processing the tentative commits on
reconnect.

First, the log can be compacted by taking advantage of
the fact that at reconnect time the tentative commits will be
processed in a batch; they will all be serialized at the same
point with respect to transactions that ran at other FEs. E.g.,
if transaction T2 depends on T1, then for T2 we only log
its additional reads and writes beyond what T1 did (plus a
pointer to T1’s log record).

Second, the use of snapshots can reduce the need for
logging. Snapshots capture the state of the database at the
point the snapshot was generated, and are independent of
the current database state. Snapshot objects are volatile:
accesses to volatile object are not tracked for concurrency
control purposes and they are not logged in the tentative
commit log. Transactions that use only volatile objects
can be committed locally by the FE during disconnect;
tentative commits are used only for transactions that read
or write cached database objects. If database accesses are
replaced with snapshot accesses, the size of the log can be
significantly reduced.

Snapshots can only be used for cases where users can
compute over data that is potentially out-of-date. For exam-
ple, suppose a user snapshots the design of an automobile
prior to disconnect. This snapshot can be used during dis-
connect to compute the total cost of the design, the number
of assembly steps, etc. — the user, having explicitly gener-
ated the snapshot, is aware that these computations will not
reflect updates to the design that occurred after the snapshot
was generated. In some cases users know that an object will
never be modified in the future, even though it has update
methods; e.g., a spreadsheet representing the last quarterly
report is not updated after it has been finalized. Such ob-
jects are excellent candidates for snapshoting.

In the current Thor implementation, when an application
attempts a commit, the result is either commit or abort.
If tentative commits are supported, the commit operation
must have an additional “tentative-commit” result. The
application, on receiving the first such result, should ask the
user whether it should proceed with additional transactions
or should abort and suspend until reconnect (as in the cache
miss case above), allowing it to execute the transaction as a
normal transaction when it resumes. This is in line with our
philosophy that different semantics, such as the uncertainty
of a tentative commit, must be exposed to users, and users
must be able to control an application’s behavior for such
cases. (Determining the user’s instructions for the cache
miss or tentative commit cases need not be interactive; there

could be a user environment that applications consult to
determine what action to take. Our point is that users must
ultimately have control over the behavior of applications
during disconnected operation.)

We should also mention here that tentative commits may
be useful even when a client is fully connected. For some
types of transactions, e.g., where the user is very confi-
dent that a commit will occur, it makes sense to allow a
transaction to do a tentative commit and proceed imme-
diately to executing the next transaction. In this case a
tentative commit record is logged as before, while a com-
mit request is sent right away (in the background); once
the commit outcome is known, the tentative commit record
can be truncated from the tentative commit log. (Failed
tentative commits would be handled as described for the
case of failure on reconnect.)

3.3 Reconnect

When the client machine reconnects, the FE attempts to
really commit all the tentatively committed transactions.
This leads to two questions: how to make commit as likely
as possible, and what to do if you cannot commit. We
propose to make use of high-level semantics of objects
to reduce aborts, and to provide replay tools when aborts
happen.

There are a number of ways to increase the probability
of commit. First, as described above, snapshots reduce the
read and write sets of a transaction, thus making commit
more likely.

Second, read-write sharing can be controlled by the
application, or by users themselves, so that conflicts are
avoided. For example, co-authors of a paper often agree in
advance about who is working on what sections of a paper;
in this case some mutual exclusion knowledge is main-
tained outside the system. Mutual exclusion information
can also be stored within the system, e.g., a co-authoring
system might support the recording of authors assigned to
sections, and only allow the correct author to edit a sec-
tion. Such application-level locks would be held during
disconnect periods, ensuring that an author’s updates could
be committed once the author’s machine is reconnected.
(Such applications often have a natural “check-out/check-
in” model, where a lock is acquired/released by these ac-
tions. To avoid permanent lockup due to a check-in that
never has a corresponding check-out, the application should
of course include lock timeouts or a means of explicitly re-
leasing locks; thus the client actually holds a lease on the
lock [12].)

A third way to increase the likelihood of commit is to
take advantage of object semantics to increase concurrency,
by applying type-specific concurrency control [8, 23] in-
stead of simple read-write locking . Herlihy [13] describes

4

type-specific optimistic concurrency control, which is the
approach we would use for Thor objects. Briefly, pairwise
conflict checks are specified for each pair of methods of
a given type. Because validation is performed after these
methods have been executed, the actual arguments and re-
sults can be used in these conflict checks. For example,
storing into the first element of an array does not conflict
with reading the second element; as a second example, if a
transaction fetched the second element of an array and ob-
tained the result 33, this would not conflict with an earlier
transaction that stored 33 in the second element.

Applying such an approach has a cost, however. Rather
than logging reads and writes in the tentative commit log,
one must log method invocations, possibly with argument
or result values (if these are used in the specified conflict
checks). As a result, tentative commit logs would be larger
and validation on reconnect would take longer.

In spite of these additional costs, the type-specific ap-
proach is clearly valuable for certain data types, as it can
considerably reduce the number of aborts. Users could
control which data types (or even which objects of which
data types) use type-specific concurrency control, limiting
its use to those objects that often fail simple read-write
conflict checking.

File systems actually provide a strong case for the utility
of selectively applying this approach. Note that systems
such as Coda actually use optimistic type-specific concur-
rency control, but only for a single data type: the directory
type. The semantics of directory creation and deletion,
and of different kinds of directory updates, are all taken
into account when a Coda client reconnects. For example,
adding a file to a directory does not conflict with removing
another file from the same directory. To support this kind
of fine-grained directory-specific conflict checking, Coda
logs each directory operation separately, and sends the log
to servers on reconnect, where they are compared with the
logged directory updates of committed transactions. This
is analogous to the work that Thor would have to perform
for other data types that did this kind of conflict checking.

For an OODB, instead of just providing this kind of fine-
grained conflict checking for a single built-in type, we can
allow users to specify appropriate conflict checks for any
of the abstract types that they define. The type system of
an OODB gives us considerable flexibility compared to a
typeless file system and a much more principled approach.

In spite of the above techniques, there will still be
cases where a tentatively-committed transaction ends up
aborting. When this happens, all transactions that depend
on the aborted transaction must also abort, although non-
dependent transactions may still be able to commit. Since
the effects of aborted transactions are likely to be important
to users, tools to help users recover are needed. To help the
user recover requires saving context and allowing replay.

There has been work in the database area on the recovery
problem [9, 11]. (There has also been work on supporting
recovery for write-write file conflicts in file systems [15].)
In the best case, the system can simply re-run the transac-
tion in the new state, but this works only if no user input
is required. So the best general approach is to start up the
replay at the earliest abort, with information about what
happened, and let the user and/or application take it from
there.

4 Partial Disconnect

In the future, clients probably won’t be completely discon-
nected from servers but merely “less” connected, where
less connected means: lower communication bandwidth,
higher delay, more cost, intermittent inability to connect.

Since communication will be poorer during the less-
connected time, it will still be good to prepare for such a
period by preloading the client cache with the right infor-
mation. When there is a cache miss, fetching the missing
information is now possible, but is probably best done un-
der user control, for two reasons: the fetch may take a long
time, and the cache miss may indicate that there are many
missing items, so that it is better to handle the problem at a
higher level (e.g., by doing a query to fetch the group).

However, the client should get better service because of
the partial connection. For example, it might be possible
to commit transactions, rather than tentatively committing
them, or at least to commit groups of them periodically.
This not only increases the probability of commit, but re-
duces information storage at FEs. On the other hand, com-
mitting will still have higher latency than before, so that
tentative commits, along with techniques that increase the
probability of commit, will still be important. In addition,
FEs should reconnect periodically to keep cached informa-
tion current.

5 Conclusions

This paper has discussed issues that arise in providing dis-
connected and partially connected operation in an object-
oriented database like Thor. Our conclusions are:

1. The implementation of Thor is well-suited to this mode
of operation. In particular, the use of client caching
and optimistic concurrency control work well under
these conditions.

2. Writing queries in an object-oriented query language
is a good way to describe what to bring into a cache
before disconnect.

5

3. Different semantics must be supported during a dis-
connect, and users need to be aware of this. In par-
ticular, only tentative commits are possible during a
disconnect, and users should determine whether they
ought to be used.

4. Techniques for increasing the probability of transac-
tion commit will be important to make reconnect work
well. These techniques are similar to those used in file
systems for resolving conflicts, but can be approached
more methodically when tied to abstract types.

5. Techniques used to provide good service when there
is complete disconnect are also useful when there is
partial disconnect, but users can expect better service
in such a system because of the extra communication.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Effi-
cient Optimistic Concurrency Control Using Loosely Syn-
chronized Clocks. Submitted to the 1995 ACM SIGMOD
Int. Conf. on Mgmt. of Data, May 1995. Available as Pro-
gramming Methodology Group Memo 85, MIT Laboratory
for Computer Science.

[2] M. Carey, D. DeWitt, and J. Naughton. The OO7 Bench-
mark. In Proc. 1993 ACM SIGMOD Int. Conf. on Mgmt. of
Data, pages 12–21, Washington, DC, May 1993.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data
Caching Tradeoffs in Client-Server DBMS Architectures.
In Proc. 1991 ACM SIGMOD Int. Conf. on Mgmt. of Data,
Denver, CO, June 1991.

[4] M. Day. Object Groups May Be Better Than Pages. In Proc.
4th Workshop on Workstation Operating Systems, pages
119–122, 1993.

[5] M. Day. Client Cache Management in a Distributed Object
Database. PhD thesis, Massachusetts Institute of Technol-
ogy, 1994 in preparation.

[6] O. Deux et al. The Story of O2. IEEE Trans. on Knowledge
and Data Engineering, 2(1):91–108, March 1990.

[7] O. Deux et al. The O2 System. Communications of the ACM,
34(10):34–48, October 1991.

[8] A. Fekete, N. Lynch, M. Merritt, and W. Weihl.
Commutativity-Based Locking for Nested Transactions.
Journal of Computer and System Sciences, 41(1):65–156,
August 1990.

[9] H. Garcia-Molina. Using Semantic Knowledge for Trans-
action Processing in a Distributed Database. ACM TODS,
8(2):186–213, June 1983.

[10] S. Ghemawat. Disk Management for Object-Oriented
Databases. PhD thesis, Massachusetts Institute of Tech-
nology, 1995 in preparation.

[11] D. Gifford and J. Donahue. Coordinating Independent
Atomic Actions. In Proc. of IEEE CompCon85, pages 92–
95, February 1985.

[12] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency.
In Proc. 12th ACM Symposium on Operating Systems Prin-
ciples, pages 202–210, 1989.

[13] M. Herlihy. Apologizing Versus Asking Permission: Opti-
mistic Concurrency Control for Abstract Data Types. ACM
Trans. on Database Systems, 15(1):96–124, March 1990.

[14] D. Hwang and B. Liskov. Index Maintenance for Object-
Oriented Databases Using Semantic Information. Submitted
to the 1995 ACM SIGMOD Int. Conf. on Mgmt. of Data,
May 1995. Available as Programming Methodology Group
Memo 86, MIT Laboratory for Computer Science.

[15] P. Kumar and M. Satyanarayanan. Supporting Application
Specific Resolution in an Optimistically Replicated File Sys-
tem. In Proc. 14th Workshop on Workstation Operating
Systems, pages 66–70, October 1993.

[16] C. Lamb et al. The ObjectStore Database System. Commu-
nications of the ACM, 34(10):50–63, October 1991.

[17] B. Liskov, M. Day, and L. Shrira. Distributed Object Man-
agement in Thor. In T. Özsua et al., editors, Distributed
Object Management, pages 79–91. Morgan Kaufmann, San
Mateo, CA, 1994.

[18] D. Maier and J. Stein. Indexing in an Object-Oriented
DBMS. In Proc. 1986 Int. Workshop on Object-Oriented
Database Systems, pages 171–182, Pacific Grove, CA,
September 1986.

[19] W. Montgomery. Robust Concurrency Control for
Distributed Information System. Technical Report
MIT/LCS/TR-207, MIT Laboratory for Computer Science,
Cambridge MA, December 1978.

[20] J. Orenstein et al. Query Processing in The ObjectStore
Database System. In Proc. 1991 ACM SIGMOD Int. Conf.
on Mgmt. of Data, pages 171–182, San Diego, CA, June
1992.

[21] J. O’Toole and L. Shrira. Opportunistic Log: Efficient In-
stallation Reads in a Reliable Object Server. In 1rst Sym-
posium on Operating Systems Design and Implementation,
Monterey, CA, November 1994.

[22] M. Satyanarayanan, J. Kistler, L. Mummert, M. Ebling,
P. Kumar, and Q. Lu. Experience with Disconnected Oper-
ation in a Mobile Computing Environment. In Proc. 1993
Usenix Symposium on Mobile and Location Independent
Computing, pages 11–28, Cambridge, MA, August 1993.

[23] W. Weihl and B. Liskov. Implementation of Resilient,
Atomic Data Types. ACM Trans. on Programming Lan-
guages and Systems, 7(2):244–269, April 1985.

6

