
Object Groups May Be Better Than Pages

Mark Day
mday@lcs.mit.edu

MIT Laboratory for Computer Science

July 30, 1993

Abstract
I argue against trying to solve the problem

of clustering objects into disk pages. Instead,
I propose that objects be fetched in groups that
may be specific to an application or user, and
that can be computed at fetch time. I briefly
describe crystals, which serve to record such
groups statically. Finally, I speculate that ob-
ject fetching may be particularly relevant for
providing services to very small machines with
limited memory, such as personal digital assis-
tants.

1 Context

In a distributed object-oriented database sys-
tem, server machines store persistent objects
shared by applications running on client ma-
chines. When an application invokes an op-
eration on a persistent object, that operation
must run on either the server or client. I
consider the case where objects are moved or
copied to the client for at least the duration
of the client transaction. A number of exist-
ing object-oriented databases work partially or
entirely in this mode of executing operations
on the client machine: examples are O2 [1],
GemStone [2, 8], and Orion [6].

545 Technology Square, Cambridge, MA 02139,
USA. This research was supported in part by the Ad-
vanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research un-
der contract N00014-91-J-4136 and in part by the Na-
tional Science Foundation under Grant CCR-8822158.

A number of systems transfer pages from
server to client. Transferring pages simpli-
fies storage management, since the units trans-
ferred are of fixed size, and it allows the use of
hardware page-fault mechanisms. However,
this approach requires that one have tremen-
dous faith in mechanisms for clustering objects
into pages in a reasonable way.

2 Sophisticated Clustering is a
Zero-Sum Game

Assume for the moment that we have perfect
predictive information about access patterns
of applications. There is a certain amount of
clustering that we can do that benefits all of
the applications, but after this point clustering
becomes a zero-sum game: making the clus-
tering better for one application makes it worse
for another. This effect is not just an intuition,
but was apparent in recent work by Tsangaris
and Naughton [12].

If it were possible, we would like to cluster
as well as we can for each application. In
particular, we should be able to accommodate
a new application or a dramatically changed
access pattern in a relatively straightforward
and inexpensive way.

 



3 Does Clustering Really Work?

The problem is that we never do have perfect
predictive information. Among those who be-
lieve that clustering is important, the field then
divides into two camps: one consists of those
who assert that people are unlikely to cluster
a database well, so database clustering should
be done automatically; the other consists of
those who assert that automatic mechanisms
are likely to be too expensive, and so clus-
tering should be done by a human database
administrator.

As far as I can tell, both of these camps are
partly right. I have yet to see any indication
that automatic tools are practical in produc-
tion systems, nor any indication that clustering
by an administrator is something other than
a shadowy art that sometimes does the right
thing and sometimes does not.

Clustering is intrinsically a difficult, and
perhaps impossible, problem. The notion is
that we should somehow be able to predict
access patterns to a very large collection of
objects, and then pack the objects into pages
accordingly. Why on earth do we want to do
that, anyway?

4 Are We Solving the Wrong
Problem?

The first thing to realize about clustering is that
it is a compromise. It is not what we really
want to do. Instead, it is the best that we can
do with disks.

A disk is an example of a system where
the initial cost of a transfer is relatively high
and the marginal cost of transferring extra
(sequentially-accessed) information is rela-
tively low. This cost structure provides an in-
centive to make each disk read fairly large, to
amortize that cost over a number of contiguous
objects.

We may have some way to determine
“likely” groups of objects to prefetch based on

the application. But because there’s no way
with a disk to delay the computation of object
groups until runtime, someone has to make
their best guess about access patterns, and cast
those in oxide on the disk. Since disks are typi-
cally implemented to manage fixed-size blocks
or pages, the clustering takes place in terms of
those blocks or pages.

But the object groups that we really want to
fetch vary among applications, and even vary
from day to day. There is no “right” clustering
that we can fix in place and forget.

5 Solving the Right Problem

One way to view a distributed system is that
it just moves the disk further away from the
application; but that view ignores the possibil-
ity of taking advantage of the server’s memory
and processor. Consider instead how object
fetching can change to take advantage of that
memory and processing power. Assume for
the moment that the server can keep all of the
objects in the current working sets of all its
clients in real memory.

A network has some similarities to a disk:
there is a relatively high initial cost for send-
ing any packet and a relatively low marginal
cost for sending more bits in that packet. The
economic analogy is only true up to the point
where the first packet is full, since subsequent
packets are no cheaper — unlike reads of sub-
sequent blocks as a disk rotates under the head.
But in contrast to the disk, the server’s memory
is random access. In addition, the server pro-
cessor can be used to determine which objects
to fetch. So we can build a system in which the
server dynamically determines groups of ob-
jects to prefetch, instead of simply sending the
page on which the requested object appears.

Sending something other than a page is be-
coming more important as hardware pages get
larger: the newest machines in our lab have
pages of 8K bytes (1K 8-byte words), and we
expect that about 100 “typical” objects will



fit on each such page. This is in contrast to
when Stamos made measurements of LOOM
and estimated that a typical page would hold
11 objects [10]. As pages get larger, it seems
less likely that a single page will contain only
semantically-related objects, and more likely
that a single page will contain a lot of junk
from the point of view of any given applica-
tion. Taken together with the possibility of
poor clustering spreading the objects of inter-
est across multiple pages, big pages can lead
to very inefficient use of the network and the
client’s local storage.

In the Thor distributed object-oriented
database system[7], we have one mechanism
for moving data between the server’s mem-
ory and disk, and a different mechanism for
moving data between the client and the server.
Server segments are significantly larger than
current pages. Segments are transferred be-
tween the disk and the server’s memory. Ob-
jects are then fetched out of these large seg-
ments and sent to clients in smaller groups that
are more useful for those clients than whole
segments would be.

6 Crystals

Although it is possible to delay all computa-
tion of group membership until the moment of
fetching an object, it will often be useful to
record the result of that computation and use
it instead of rerunning the computation. I pro-
pose a mechanism, called crystals, to accom-
plish this. A crystal is an object that describes
a group of objects specifically for the purpose
of prefetching those objects. It can be con-
structed explicitly by identifying a collection
of objects, or it can be constructed implicitly
(all of the objects touched between starting and
ending an implicit crystal are included in the
crystal). It may also be possible to construct
and use a crystal completely automatically, in a
way analogous to the working graphs and pro-
gram trees of Tait and Duchamp [11]. How-

ever, as currently envisioned, crystals are user-
or application-level hints, and so have more
in common with the ideas of transparent in-
formed prefetching [9].

One way to see a crystal is as a substitute for
a cluster: we compute a placement and save
it. A crystal is better than a cluster because
multiple independent users can have conflict-
ing crystals, but the system can have only one
physical clustering. We thus provide a tool
to applications to describe their own “cluster-
ing” and use the result to prefetch accordingly.
However, in contrast to previous work (such as
segments and segment groups in ObServer [3])
we do not guarantee that the elements grouped
by a crystal will be contiguous on disk. We use
the crystal simply as a hint: we prefetch the
objects present in memory, and we can start
disk reads for the objects not in memory.

A secondary use of crystals is to provide ex-
tra information about likely access patterns to
the process that clusters objects into segments
on the disk.

7 Implications for Small Client
Machines

The next generation of very small machines
— pen-based machines, personal digital as-
sistants, wearable computers, and the like —
seem likely to repeat the path already fol-
lowed by minicomputers and personal com-
puters: they will initially have relatively little
physical memory, and it will be years before
they have virtual memory. They may often be
communicating over links that are quite slow
compared to the speeds available for desktop
machines.

Such small machines can benefit from be-
ing clients of a system like Thor, where the
servers can provide large amounts of highly-
available, reliable, geographically-distributed
shared storage. Thor can accommodate even
machines with very limited storage and no in-



terest in prefetching, since it can send indi-
vidual objects in response to requests. But
by using prefetching and crystals, clients with
more resources can also achieve higher per-
formance than would be possible in a strict
object-fetching system.

OOZE [4] and LOOM [5, 10] already
demonstrated the value of object faulting for
small memories. Tunable prefetching seems
likely to be useful for a wider range of clients
than clustering into fixed-size pages could be.

References

[1] François Bancilhon, Claude Delobel, and
Paris Kanellakis, editors. Building an
Object-Oriented Database: The Story of
O2. Morgan Kaufmann, 1992.

[2] Paul Butterworth, Allen Otis, and Jacob
Stein. The GemStone object database
management system. Communications of
the ACM, 34(10):64–77, October 1991.

[3] Mark F. Hornick and Stanley B. Zdonik.
A shared, segmented memory system for
an object-oriented database. ACM Trans-
actions on Office Information Systems,
5(1):70–95, January 1987.

[4] Ted Kaehler. Virtual memory for an
object-oriented language. Byte, pages
378–387, August 1981.

[5] Ted Kaehler. Virtual memory on a nar-
row machine for an object-oriented lan-
guage. In Object-Oriented Programming
Systems, Languages, and Applications
(OOPSLA), pages 87–106, 1986.

[6] Won Kim, Nat Ballou, Hong-Tai Chou,
Jorge F. Garza, Darrell Woelk, and Jay
Banerjee. Integrating an object-oriented
programming system with a database
system. In Object-Oriented Program-
ming Systems, Languages, and Applica-
tions (OOPSLA), pages 142–152, 1988.

[7] Barbara Liskov, Mark Day, and Liuba
Shrira. Distributed object management
in Thor. In M. Tamer Özsu, Umesh
Dayal, and Patrick Valduriez, editors,
Distributed Object Management. Mor-
gan Kaufmann, San Mateo, California,
1993.

[8] David Maier, Jacob Stein, Allen Otis, and
Alan Purdy. Development of an object-
oriented DBMS. In Object-Oriented Pro-
gramming Systems, Languages, and Ap-
plications (OOPSLA), pages 472–482,
1986.

[9] R. Hugo Patterson, Garth A. Gibson, and
M. Satyanarayanan. A status report on re-
search in transparent informed prefetch-
ing. ACM Operating Systems Review,
27(2):21–34, April 1993.

[10] James William Stamos. A large object-
oriented virtual memory: Grouping
strategies, measurements, and perfor-
mance. Technical Report SCG-82-2, Xe-
rox PARC, May 1982.

[11] Carl D. Tait and Dan Duchamp. De-
tection and exploitation of file working
sets. In Proceedings of the 11th Confer-
ence on Distributed Computing Systems,
pages 2–9, Arlington, Texas, 1991.

[12] Manolis M. Tsangaris and Jeffrey F.
Naughton. On the performance of ob-
ject clustering techniques. In Michael
Stonebraker, editor, Proceedings of the
1992 ACM SIGMOD International Con-
ference on Management of Data, pages
144–153. ACM Press, 1992.


