
Opportunistic Log: Efficient Installation Reads
in a Reliable Storage Server

James O’Toole Liuba Shrira

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139 james,liuba @lcs.mit.edu

Abstract

In a distributed storage system, client caches managed
on the basis of small granularity objects can provide better
memory utilization then page-based caches. However, ob-
ject servers, unlike page servers, must perform additional
disk reads. These installation reads are required to install
modified objects onto their corresponding disk pages. The
opportunistic log is a new technique that significantly re-
duces the cost of installation reads. It defers the installation
reads, removing them from the modification commit path,
and manages a large pool of pending installation reads that
can be scheduled efficiently.

Using simulations, we show that the opportunistic log
substantially enhances the I/O performance of reliable stor-
age servers. An object server without the opportunistic log
requires much better client caching to outperform a page
server. With an opportunistic log, only a small client cache
improvement suffices.

Our results imply that efficient scheduling of installa-
tion reads can substantially improve the performance of
large-scale storage systems and therefore introduces a new
performance tradeoff between page-based and object-based
architectures.

1 Introduction

A distributed storage system provides long-lived data ob-
jects accessed by clients over a network. As such sys-
tems scale to support many clients they tend to become I/O
bound.

A fundamental design decision concerns the granular-
ity of the data exported by the server to the clients. The

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136, in part by the National Sci-
ence Foundation under Grant CCR-8822158,and in part by the Department
of the Army under Contract DABT63-92-C-0012.

server can export small-granularity objects (units semanti-
cally meaningful to the application), or it can export large
fixed-size pages (the unit of disk transfer). The relative
merits of this fundamental design choice are still the sub-
ject of debate [2, 3, 4, 7].

Client caches managed on the basis of small granularity
objects can provide better memory utilization than page-
based caches because pages are likely to include unneeded
data that cannot be discarded from the cache [3, 4, 7, 14, 21].
On the other hand, object servers may need to do extra I/O
when a modified object needs to be updated on disk. If the
containing page is not in the object server cache, this page
has to be read back from the disk. The modified object is
then installed in the page, and the page can be written out.
These extra installation reads do not happen in page servers
because the whole page with the modified objects is sent
back from the client.

We expect many object modifications to require instal-
lation reads in large-scale client-server storage systems.
There will be many clients using the server, so the pages
containing the combined working set of the clients will not
fit inside of the server cache memory.

In this paper, we introduce a simple new approach for
organizing I/O that substantially enhances the I/O perfor-
mance of object servers. A standard technique to make
updates atomic is to record them in a stable write-ahead
log [10]. We keep this log of modifications in memory and
defer installation reads from the commit path. This allows
the accumulation of a large pool of pending installation
reads that can be scheduled efficiently using well-known
disk scheduling techniques [13, 25].

How does one evaluate the impact of scheduled installa-
tion reads on the overall performance of an object storage
system? One way is to study how it affects the performance
tradeoffs between object and page-based architectures. The
comparison of the I/O performance of the object and page
architectures depends crucially on the difference in how
well the respective client caches perform. One extreme is
if the loads generated by the client caches are exactly the
same, in which case the page server has an advantage. At

the other extreme, if the object architecture makes the client
cache more effective, this should decrease the server load,
giving the advantage to the object server. Between these
two extremes there is a break even point where the two
systems have equivalent performance.

We construct a simple performance model that focuses
on the I/O costs in object and page servers. Using simula-
tions, we study the effect of scheduled installation reads on
the break even point. The results show that when server I/O
performance is a bottleneck our techniques have a dramatic
effect on the competition between page servers and object
servers. Without scheduled installation reads, break even
requires a substantial improvement in the client cache per-
formance. With our techniques only a small improvement
suffices.

Although there exists substantial work on optimizing de-
ferred writes [13, 20, 25], and read-ahead is used to optimize
sequential reads, we are the first (to our knowledge) to take
advantage of the opportunity to optimize the installation
reads that are important in object servers. We think that file
systems could also benefit from optimized installation reads
when performing updates to file system meta-data and very
small files. Conventional file systems do perform installa-
tion reads in these and other situations, but because they do
not have a log they cannot defer the installation reads and
schedule them efficiently.

Previous studies [2, 7] compared the communication and
concurrency control cost of page-based and object-based
architectures. Our study is the first to identify the fun-
damental I/O performance tradeoff between the efficiency
of object cache and the cost of installation reads. Our re-
sults imply that efficient scheduling of installation reads
can substantially improve the performance of large-scale
object systems, and hence, our techniques affect the per-
formance tradeoffs between page-based and object-based
architectures.

In the following sections, we introduce the basic reliable
object server design (Section 2) and describe the oppor-
tunistic log design (Section 3). We then describe our exper-
imental setup, presenting the experimental server configu-
rations and the simulation model (Section 4). We present
simulation results that illustrate the value of our techniques
(Section 5). Finally, we discuss related research (Section 6)
and our conclusions (Section 7).

2 Reliable Object Servers

This section introduces the basic design of a reliable object
server. A reliable object server provides transactional up-
dates to persistent objects. Objects managed by the server
are grouped into pages on disk. Objects are small, and a
single page can contain many objects. Pages are the unit
of disk transfer and caching at the server. We assume that

objects on disk are updated in place.1

For concreteness in this presentation, we assume opti-
mistic concurrency control and in-memory commit. These
features of our object server architecture are derived from
the Thor [17] persistent object system. Nevertheless, we
believe that the new technique we are proposing is indepen-
dent of these two assumptions.

Fetching

Clients fetch objects to a local client cache as objects are
read, update objects in their cache as they are written, and
send back updated objects in a commit request to the server.
To improve performance, the client prefetches objects. We
assume for simplicity that the prefetching unit is the page
containing the object that the client is reading.

Committing

The clients and the server together execute a concurrency
control and cache consistency protocol that ensures all
transactions are serializable and all client caches are “al-
most” up-to-date. Since we use an optimistic concurrency
control scheme, a client transaction may read an out-of-date
value, in which case it will be aborted by the server when
it sends its commit request. We assume the need to abort is
detected at the server using a validation phase that does not
require any disk accesses; see Adya [1] for the details.

disk

network

page cache

Log

commit(objects)

install(object)

fetch

object
server

client
object
cache

client
object
cache

Figure 1: Clients using an object-based server.

When the client sends a commit request, the server
records a commit record in a stable log, as shown in Fig-
ure 1. The commit record contains the objects modified by
the client. A client’s transaction is considered committed
once its commit entry is present in the log.

1An alternative log-structured disk organization for objects would also
be possible and is considered by Ghemawat [9].

Installing

After a transaction commits, modifications from the log are
applied to the appropriate pages; we call this update process
installation. Note that an install may require a disk read if
the page to be updated is not currently cached. This is an
important point, and throughout the paper we are careful
to distinguish between disk reads initiated by a client fetch
request and reads initiated by an install in the object server.
Installs are synchronized with fetch requests, to ensure that
fetches retrieve the current committed object state.

Writing

Installations modify pages in the cache, but the dirty pages
are not immediately written to disk. We assume that dirty
pages are accumulated to permit efficient disk arm schedul-
ing when writing.

3 The Opportunistic Log

We suggest that the server may substantially improve disk
I/O performance by opportunistically choosing log entries
for installation. We expect opportunistic log processing
to reduce the disk I/O requirements of an object server
in several ways. The benefits of this method may be so
substantial as to justify allocating a large fraction of server
primary memory to the log.

When an updated object is to be installed onto its con-
taining page, that page must be read from the disk if it is not
already in the server cache. Installation reads can represent
a significant source of disk load in an object server (see
Section 4). By delaying the installation and performing in-
stallation reads opportunistically on the basis of disk head
position, we can expect to dramatically reduce the expected
cost of an installation read.

There is substantial previous work on delayed process-
ing of disk write operations [13, 25]. Some methods ap-
plied to delayed disk writes involve writing pages at new
locations [5, 8, 22] and would not work with disk reads.
However, standard disk scheduling methods based on head
position apply equally well to read operations. In partic-
ular, Seltzer et. al. [25] have shown that when a pool of
1000 operations is available, greedy algorithms can reduce
the cost of individual operations to a fraction of the normal
random-access cost.

3.1 Basic Tradeoffs

In addition to reducing the cost of installation reads, we
expect to reduce the number of installation reads. With
enough object modifications waiting in the log, there will
sometimes be multiple object modifications that belong in
the samepage. In this case, by installing these modifications
together, only a single installation read will be required. It
might even make sense to preferentially choose installation

reads that will combine multiple pending log entries in this
way.

An installation read will also be avoided when a client
fetch operation requires a fetch read of a page for which
there exists a pending installation. Note however, that such
a fetching read needs to be serviced right away since the
client is waiting for it, and cannot benefit as much from
efficient disk arm scheduling. This indicates that when a
large fraction of the installation reads is avoided by pre-
ceding fetch reads, the benefit of scheduling installations is
reduced.

In these examples, the installation reads are being
avoided when installations occur nearby in time to each
other or to a fetch request involving the same disk page.
Even without opportunistic log processing, the cache mem-
ory in the server would help avoid installation reads when
temporal locality is present. However, the object modifi-
cation log should enlarge the window of opportunity for
exploiting temporal locality because the log can store mod-
ified objects more compactly than the page cache.

However, there is a tradeoff between allocating memory
to the page cache and allocating it to the log. The page
cache provides a pool of dirty pages for writing and the
log provides a pool of dirty objects that require installation
reads. These disk operations will have lower individual
costs when a larger pool of candidate operations is available
to the scheduler. If too much memory is allocated to one
pool, then the disk cost of the operations selected from the
other pool will increase.

3.2 Prototype Design

We have described how a large in-memory log of delayed
object installations can offer optimization opportunities.
We must choose a simple prototype design that can be used
in our simulation experiments. The reliable object server
must maintain a log of object updates that have not yet been
installed onto corresponding pages. Here, for simplicity,
we will assume that the server memory is non-volatile.

Thus, the opportunistic server can use a simple sched-
uler that considers only disk position information to select
delayed installations for processing, as shown in Figure 2.
The scheduler is free to process and discard the log entries
in an arbitrary order. The prototype design will use a greedy
scheduler that always selects the delayed installation read
that has the shortest positioning time, based on the most
recent disk head position. The scheduler uses a branch-
and-bound implementation of the shortest positioning time
algorithm [25]. We estimate that a good branch-and-bound
implementation would make approximate shortest position-
ing time calculations over thousands of disk operations fea-
sible in current disk controllers.

Without non-volatile memory, the server would need to
write the log to a stable disk to commit transactions. The
log entries would also be retained in volatile memory for
installation processing. The installation processing would

client
cache

client
cache

network

Log

commit(objects)

install(object)page
cache

fetch

opportunistic
server

disk

sched

disk info

Figure 2: Object Server with Opportunistic Log

be somewhat complicated by the need to bound length of
the log, as in a conventional databases with a write-ahead
log [10]. In this case the opportunistic log might need to
use an age-weighted scheduling algorithm.

4 Experimental Evaluation

To evaluate our technique we studied the effect of the op-
portunistic log on the performance of a persistent object
system. We focus here on the I/O requirements of the
persistent object system because these systems tend to be-
come disk bound when they scale to support many clients.
Moreover, the current hardware trend towards processor
performance outstripping I/O performance appears likely
to exacerbate this problem in the foreseeable future.

We performed a series of experiments by simulating a
system of clients and a reliable server. The goal of our simu-
lations is not to predict the actual performance of the system
precisely but to compare fairly the disk I/O requirements
of the system with and without the prototype opportunistic
log.

In our simulations we use a simplified server workload
with a uniform access pattern and fairly large objects. A
workload generated by real client applications would prob-
ably exhibit a skewed access pattern and some temporal
locality. However, in a large-scale system the server will
observe the workloads of many clients mixed together. With
enough clients, the server memory will not be large enough
to extract much benefit from the locality present in an indi-
vidual client’s request stream. The combined working set
of all the clients will not fit in the server cache memory
in pages, so the pages fetched by a client will be quickly
displaced by other traffic passing through the server cache.

We assume large objects because this is a worst-case
scenario for our proposed opportunistic log design. With
smaller objects, the in-memory log will store more pending
installations per page of memory used.

We use a simplistic client model with a single parameter
directly controlling how much work the client can do out of
his local cache. The performance of a client cache should
be reflected in the number of fetch operations in the request
mix observed by the server, so we choose the fetch ratio
as our workload parameter. The fetch ratio is defined as
the ratio of the number of fetch operations generated by the
client cache system to the number of transaction commit
operations. Traditionally studies like ours have focused on
the cache hit ratio, but this measure is not very useful in a
system with prefetching.

4.1 Impact of the Opportunistic Log

Our first experiments investigate the impact of the oppor-
tunistic log on the performance of a reliable object server.
In these experiments, the client behavior is fixed. First, we
isolate the two main effects of the opportunistic log: elim-
inating installation reads through absorption and reducing
installation read cost through disk scheduling.

To isolate these two effects we implement three ob-
ject server configurations and compare their throughput.
An opportunistic server implements the design presented
in 3.2 and therefore benefits from both absorption and disk
scheduling. A basic server uses the log to defer and sched-
ule disk writes but does not defer or schedule installation
reads. This configuration represents an object server with
an in-memory log [18]. An absorbing server defers in-
stallations but does not use intelligent disk scheduling for
installation reads. This configuration benefits from absorp-
tion only. Section 5.1 presents and analyses these results.

To understand the impact of the opportunistic log on
server cache performance, we explore the tradeoffs in-
volved in choosing the log size. We compare the throughput
of an opportunistic server with widely varying log sizes and
show the tension between more efficient disk arm schedul-
ing for installation reads and for writes. Section 5.2 presents
and analyses these results.

4.2 Comparison with Page Server

Our next experiments investigate the impact of the oppor-
tunistic log on the overall performance of an object storage
system. The opportunistic log optimizes the installation
reads that occur in object servers. Since installation reads
do not occur in page based servers, optimization of in-
stallation reads affects the performance tradeoffs between
page-based and object-based systems.

Several studies have indicated that object caching at
the client can provide better utilization of client mem-
ory [3, 4, 14, 21] than page caching because the cache
can hold more objects that are useful to the client. Im-
proved client memory utilization translates into fewer fetch
operations, and therefore reduced I/O load at the server.
Therefore, object servers might outperform page servers

when client object caching reduces their fetch ratio enough
to compensate for the added I/O load of installation reads.

To examinehow opportunistic I/O affects the competition
between page servers and object servers, we implement
a page server and compare the throughput of the servers
while varying the client fetch ratio. We measure how much
the fetch ratio of the object cache must decrease to make
the object server outperform the page server. Section 5.3
presents and analyses the results of these experiments.

When considering the choice between page and object
servers we are deliberately ignoring the question of whether
the server uses page level or object level concurrency con-
trol. The choice of concurrency control granularity, though
very important in absolute terms, is orthogonal to the ques-
tion of the relative I/O costs of the object and page server
architectures. Using our validation techniques [1], either
page or object level concurrency control can be used with
both object and page servers.

4.3 Server Designs

We implemented four reliable server designs within the sim-
ulation model. The first section below describes the com-
mon features of the reliable server designs. The following
sections describe how the four servers process transaction
commits and object modifications.

Common Server Model

The server processes fetch and commit requests from clients
by reading and writing relevant database pages that are
stored on an attached disk. The server maintains a cache of
pages that is used to respond to client fetch requests and to
buffer transaction modifications that must later be written
to disk. The server supports prefetching by sending to
the client the whole page containing the requested object.
Since we assume the use of non-volatile memory in the
server, there is no disk logging cost. However, we would
not expect the cost of logging to a dedicated disk to be a
limiting factor in system throughput,so ignoring the logging
cost is a safe assumption.

When the number of clean pages in the cache drops be-
low the WriteTrigger threshold, the server writes one dirty
page to the disk. The page is selected using the shortest
positioning time algorithm [25].

In the object-based server, the simulator models the trans-
action log as a collection of modified objects. A portion of
the non-volatile primary memory is statically allocated to
hold log entries. The Objects-per-page parameter defines
the number of log entries that can be stored per page of
memory allocated. We chose to set Objects-per-page to 2
because this seems to be a very conservative choice.

Concurrency control at the server is described by the Val-
idationTime parameter, which defines the cpu time required
to validate a transaction. We chose not to model transaction
aborts because they are indistinguishable from read-only

Server
Database size (full disk) 335,500 pages
Page size 4 Kbytes
Objects-per-page 2
Server memory (10% of database) 33,550 pages
ValidationTime 5 secs
InstallationTime 1 msec
WriteTrigger 1000 clean pages
IReadTrigger 50 empty log entries

Table 1: Server Parameters

transactions for our purposes. The object servers differ
from each other in how they install object modifications
onto pages (see Section 4), but in all cases the installation
uses InstallationTime cpu time. Table 1 shows the server
simulation parameters.

Basic Object Server

In the basic object server, only the modified object is in-
cluded in the transaction commit message sent by the client.
The server adds the modified object to the log and sends a
confirming message to the client. If the page containing the
modified object is not in the cache, then the server imme-
diately initiates a disk read for that page. When the page
is available, the modified object is installed onto the page.
Then the page is marked dirty and the log entry is removed.

Absorbing Object Server

In the absorbing object server, as before, the modified ob-
ject is added to the log when a transaction commits. The
confirming message is then sent to the client. If the page
containing the object is in the cache, then the object is in-
stalled immediately. However, if the page is not in the
cache, then the installation is postponed.

When the number of empty log entries decreases below
the IReadTrigger threshold the server issues an installation
read to obtain the page needed for a pending log entry.
Whenever a page is read from the disk, whether due to a
fetch read or an installation read, all modified objects that
belong to that page are installed onto it.

Opportunistic Object Server

The opportunistic object server postpones installations as in
the absorbing server design. However, when the IReadTrig-
ger is invoked the server selects a pending installation from
the log opportunistically, using the shortest positioning time
algorithm, as described in Section 3.2.

Client Workload Parameters
Access pattern Uniform
WriteRatio 20%
FetchRatio 20%
ClientThinkTime 200 msec
Number of clients 20 70

Table 2: Workload Parameters

Page Server

In the page server, the whole page containing the modified
object is included in the transaction commit message sent
by the client. The server primary memory is non-volatile
and the page-based server therefore does not require a log.
In systems without non-volatile memory, the page server
might have a greater logging cost than the object servers
if the page server logs entire pages. However, we would
not expect the log disk to be a limiting factor, and in any
case modern page-based systems have techniques that al-
low them to do object-based logging. The page server also
uses optimistic concurrency control and in-memory com-
mit. The server stores the page into non-volatile cache
memory and marks it dirty. The server then sends a con-
firming message to the client.

4.4 System Parameters

The simulated system is described by the parameters shown
in Table 3. In general, the hardware parameters reflect our
assumption that future processor and network speeds will
increase substantially relative to disk seek latency. We
discuss the simplifications and assumptions in the sections
that follow.

Client Workload

The simulated clients each contain a cpu and a local mem-
ory for caching either objects or pages depending on the
type of server in use. Each client executes a sequence of
transactions. Each transaction accesses a single object in
the database. If necessary, the client fetches the object from
the server. Then the client computes for ClientThinkTime
and possibly modifies the object (WriteRatio). Finally the
client ends the transaction by sending a commit request to
the server. After the commit is confirmed by the server, the
client immediately starts its next transaction.

The workload parameters are shown in Table 2. They
are based loosely on similar parameters in other studies of
object servers [2, 7]. We chose not to model the contents
of the client cache because only the workload presented to
the servers is relevant to our comparisons. Therefore we
simply use the FetchRatio parameter to control the work-
load. The FetchRatio is defined as the ratio of the number

Network
Message latency 1 msec
Per-message cpu overhead 100 secs

Disk (HP97560)
Rotational speed 4002 rpm
Sector size 512 bytes
Sectors per track 72
Tracks per cylinder 19
Cylinders 1962
Head switch time 1.6 msec
Seek time (383 cylinders) 3 24 0 4 ms
Seek time (383 cylinders) 8 00 0 008 ms

Table 3: System Parameters

of fetch operations generated by the client cache system to
the number of transaction commit operations.

Network

The network model provides unlimited bandwidth and a
fixed message delivery latency. Each message transmis-
sion also incurs a small cpu overhead. We chose to ignore
network contention becausewe do not expect network band-
width to be the limiting factor in the performance of reliable
servers.

An unlimited bandwidth network favors page-based ar-
chitectures because they send larger commit messages (con-
taining whole pages). Thus, this is a convenient and safe
simplification when analyzing the disk I/O requirements of
competing server designs.

Disk

The disk modeled by the simulator provides FIFO servic-
ing of requests issued by the server. The disk geometry
and other performance characteristics are taken from the
HP97560 drive, as described by Wilkes [23]. We chose
the HP97560 model because it is simple, accurate, and
available. We believe that newer and faster drives will
make opportunistic I/O even more important because trans-
fer time is decreasing much faster than seek time [23]. That
trend should increase the relative value of locality-based
optimizations.

5 Simulation Results

In the sections that follow we first examine the relative
performance of the object server designs. Then we explore
the tradeoffs involved in choosing the log size. Finally we
show how opportunistic I/O affects the competition between
page-based and object-based servers.

We use auxiliary metrics to examine the impact of in-
stallation reads on server performance. To produce the

simulation results we randomly generated several transac-
tion traces for each workload. We sampled the behavior
of each server over intervals so large that we observed no
significant variation, and then averaged the results.

5.1 Opportunistic I/O

To test the value of opportunistic log processing we compare
the performance of the object servers. For the moment, we
arbitrarily choose to allocate 1500 pages to the log in the
absorbing and opportunistic servers.

Figure 3 shows the throughput of all three servers plotted
versus the number of clients in the simulation. Note that
with fewer than 30 clients the disk is not saturated and
the throughput rises linearly. However, when the system
is fully loaded, we can see that the opportunistic server
performs significantly better than the other two servers.
In this simulation opportunistic scheduling of installation
reads increased the maximum server throughput by over
40%.

20 30 40 50 60 70

Number of Clients

0

50

100

150

200

T
hr

ou
gh

pu
t

(t
ra

ns
ac

ti
on

s/
se

c)

Opportunistic
Basic
Absorbing

Metrics for 50 clients, fetch ratio 20%
Object Server tx/sec I-Abs. ICost IDsk

Basic 150 28% 19.0 ms 41%
Absorbing 150 29% 19.0 ms 40%
Opportunistic 214 29% 4.8 ms 15%

Figure 3: Opportunistic I/O Improves Throughput

The table in Figure 3 provides throughput, installation
absorption, and installation read disk costs for all three
servers. The installation absorption figure (I-Abs.) indi-
cates the percentage of installations that did not require

an installation read. The absorbing server did not actu-
ally increase absorption very much; 28% of installations
are absorbed even in the base system just because of fetch
operations and expected server cache hits. Of course, this
result reflects our workload: 20% of the modifying trans-
actions fetch and therefore have no installation reads, and
10% of the remaining modifications hit in the server cache.

The installation read cost (ICost) is the average number of
milliseconds that the disk arm was occupied (seek, rotate,
and transfer) by an individual installation read operation.
The aggregate cost of all installation reads (IDsk) gives
the percentage of time that the disk arm was in use by all
installation read operations in total. From these numbers
we see that because the opportunistic server can choose
installation reads from a pool of about 3000 log entries, it
is able to reduce the average installation read cost nearly
fourfold. Essentially all of the performance improvement
shown in Figure 3 is due to this.

5.2 Log Size

We examine the performance of the opportunistic server
with widely varying log sizes in Table 4. Here we see
the throughput, the installation metrics, and corresponding
write metrics. Note that for the log size used in the previous
section (1500 pages), the remaining page cache contains
over 30,000 pages. The server writes when this cache
is almost fully dirty, and the opportunistic choice among
30,000 dirty pages leads to a very attractive write cost of
only 3.0 milliseconds.

These measurements show that increasing the log is
initially very valuable as the installation read cost drops
rapidly. However, later improvements are smaller and re-
quire much greater increases in log size. Of course, this is
the effect we expected, as described by Seltzer [25].

Metrics for 50 clients, fetch ratio 20%
Log tx/s I-Abs. ICost IDsk WCost WDsk

26 159 28% 16.2ms 37% 3.0ms 9%
60 195 28% 8.2ms 23% 3.0ms 11%

325 207 28% 6.0ms 18% 3.0ms 11%
1500 214 29% 4.8ms 15% 3.0ms 12%
6000 217 33% 3.8ms 11% 3.2ms 12%

12000 217 36% 3.3ms 9% 3.4ms 13%

Table 4: Opportunistic server performance and log size

It is important to note that in this simulation, there was not
much increase in total throughput from increasing the log
size beyond 1500 pages. There was actually no improve-
ment between the last two rows of the table even though
the installation cost dropped. This is explained by the in-
crease in write cost. When the log grew by 6000 pages, the
available pool of dirty pages dropped enough to increase

20 30 40 50 60 70

Number of Clients

0

50

100

150

200

250
T

hr
ou

gh
pu

t
(t

ra
ns

ac
ti

on
s/

se
c)

Opportunistic (fetch ratio=16%)
Page Server (fetch ratio=20%)
Opportunistic (fetch ratio=20%)

Figure 4: Opportunistic Object Server vs. Page Server

the write cost by 0.2ms. Although not shown here, the
increase in log size also reduced the server cache hit ra-
tio by 2 percentage points. The combined increase in disk
usage due to these two effects effectively canceled out the
other improvements.

5.3 Objects vs. Pages

Now that we have identified a good log size for the oppor-
tunistic object server (6000 pages), we would like to com-
pare its performance to the page server. As we discussed
in Section 4, the two servers face essentially identical con-
currency control costs. And although the page server might
consume more network bandwidth, this is not included in
our simulation model. Therefore, we expect the page server
to have higher throughput because it does not need to per-
form installation reads.

However, if object-based client caching provides better
client cache performance, then the object server might be
superior because it would have a lower fetch ratio. The
difference in performance will depend on the FetchRatio,
the WriteRatio, the server memory size, and the actual cost
of installations and fetches. We varied the client FetchRatio
and found that a 4 percentage point decrease in the fetch
ratio was required for the opportunistic object server to
surpass the page server. Figure 4 shows the throughput of
the opportunistic server (for 20% and 16% fetch ratios) and
the page server (20% only).

We see from this example that when the client fetch
ratio is 20%, the opportunistic server requires a 4 point
fetch ratio decrease to surpass the throughput of the page
server. Each fetch read avoided compensates for roughly
four installation reads, because installation reads are less

0 20 40 60

Assumed Client Fetch Ratio

0

5

10

15

R
eq

ui
re

d
D

ec
re

as
e

Basic Object Server
Opportunistic Object Server (Log 6000 pages)

Figure 5: Object Caching vs. Page Caching

costly than fetch reads (compare the smallest and largest
values of ICost in Table 4). In this configuration, about 16%
of all transactions require an installation read, so removing
fetches from 4% of all transactions will compensate for the
disk cost of installation reads.

To determine the required fetch ratio decrease over a
wide range of client cache performance, we simulated the
basic object server, the opportunistic object server, and the
page server while varying the client fetch ratio between
1% and 60%, using a 50 client workload. Figure 5 plots
the decrease in client fetch ratio required by the two object
servers in order to equal the throughput of the page server
system. Note that below the 20% fetch ratio, the required
decrease is much lower because in this range the 50 client
workload is not fully loading the disk arm.

The reduced installation cost we saw in Table 4 makes
the object server worthwhile if client object caching reduces
the fetch ratio on the server by just a few percentage points.
In contrast, when installation reads are treated the same
as fetch reads, object caching is not advantageous for this
workload unless it decreases the client fetch ratios by at
least 10–20 percentage points. We believe these results are
indicative of the importance of optimizing the asynchronous
disk read operations that will be required in object-based
systems.

6 Related Work

To put our work in perspective we consider other persistent
object systems, systems that use a log for efficient disk

access, work on disk scheduling, and studies that compare
object and page architectures for persistent object systems.

Many persistent object systems use the more traditional
page based architecture [11, 19, 12]. Other systems [6,
15] use object server architectures but have not specifically
addressed the problem of installation reads.

There is an enormous literature on centralized and dis-
tributed databases (see Jim Gray’s book [10] for an excellent
survey). Most modern databases use a stable log to store
modifications to insure durability of updates. The log is not
used as a source of updates to the database during normal
operations, since database code modifies the pages directly
in memory. Therefore there are no installation reads.

RVM [24] is a portable package that provides durable
updates to virtual memory regions. RVM stores the modi-
fications to VM regions in a stable write-ahead log on disk,
propagates the modifications from the log to an (additional)
persistent copy of the data on disk, and performs installation
reads when containing pages are not in memory. However,
portability concerns, the assumption that the persistent data
fits in primary memory, and the fact that clients fetch data
from one disk copy while stable updates are propagated to
another disk copy of the database, make RVM performance
considerations very different from our work.

Harp [18] is a replicated NFS server that uses a replicated
in-memory write-ahead log to store durable modifications to
Unix files. The log defers and propagates the modifications
efficiently. However, since Harp is implemented on top of
the Unix file system, it does not access the disk directly and
does not deal with installation reads.

Much earlier effort has been invested in optimizing disk
scheduling and so widening the performance gap between
unoptimized and optimized disk access. Read-ahead is
widely used to optimize sequential reads [16]. Recent stud-
ies by Seltzer, Chen and Ousterhout [25] and by Jacobson
and Wilkes [13] aggressively take advantage of large mem-
ories to efficiently schedule deferred writes. Our techniques
capitalize on this disk scheduling work. We are not aware
of any other work besides ours that is directly concerned
with efficient scheduling of deferred reads.

Several studies have investigated the design choices for
persistent object system architecture. Dewitt et. al. [7]
focuses on the question of distributing the functionality
of a persistent object system between the client and the
server. Day [4] studies whether to fetch data on a page or
an object basis. Cheng and Hurson [3] demonstrated how
object server architecture can enable more efficient client
cache utilization. Carey et. al. [2] studied concurrency
control issues in object, page and hybrid servers. None
of these studies considered installation reads. However, in
our recent work [21] we have investigated further the I/O
performance tradeoffs related to the granularity of caching
in large-scale object storage systems. We explored a hybrid
design that selectively caches at the client either objects or
pages, trading fetch reads for (optimized) installation reads.

Our work on deferred reads would also relate to work on
prefetching, if prefetching reads were treated more like in-
stallation reads. The opportunistic log reduces the expected
cost of installation reads by taking advantage of the fact that
they are asynchronous (non-blocking) reads. It also seems
possible that the lower cost of asynchronous reads should
be considered when evaluating the cost of prefetching for
clients. Prefetch requests could be treated as asynchronous
read operations and scheduled opportunistically, as long as
the client is not currently waiting for their results.

7 Conclusion

Persistent object systems combine the flexibility of modern
programming languages with the efficiency and reliability
of modern databases. Modern programming languages sup-
port variable size objects of user defined types. Databases
support efficient access to large collections of a fixed set of
system defined types. We believe persistent object systems
will become increasingly important as applications scale in
size and complexity.

It is still an open question what is the best architecture
for a large-scale persistent object system. Should the server
export fixed size pages (the unit of disk transfer) or should
it export objects (units semantically meaningful to the ap-
plication)?

In this paper, we introduced the opportunistic log method
for organizing I/O. The opportunistic log substantially en-
hances the performance of object servers. This new tech-
nique uses an in-memory log to provide opportunities for
scheduling asynchronous reads.

The opportunistic log is applicable to any disk cache
manager that must handle large numbers of partial-block
updates, as in file systems. If a block being partially up-
dated is not in the cache, then the block must be read from
disk before the update can be processed (by “installing”
the updated bytes in the block and writing it back to disk).
Seeks and transfers for these “installation reads” make par-
tial block updates expensive. Client caching makes the
problem worse by reducing the likelihood that a block to be
updated will be resident in the server’s cache: Although the
needed block would have been read into the cache in order
to handle the client’s request to read the data, the block is
likely to have been flushed from the server cache by the
time the client’s request to modify the data arrives.

The opportunistic log technique devotes a portion of the
server cache memory to holding a pool of unprocessed
partial-block update requests. As the pool grows, instal-
lation reads needed to process these updates can be sched-
uled greedily, assuming the disk head can be scheduled
effectively by the software.

To investigate the performance advantage provided by
the opportunistic log,we built a simplified simulation model
that focuses on the I/O costs in page and object servers, and
captures the important characteristics of a large-scale object

storage system. We investigated and found that the opti-
mal log size should balance the improved cost of scheduled
installation reads against the improved cost of scheduled
writes. We then studied how our new technique affects
the performance payoff from a more efficient client cache.
Our results show that the opportunistic log technique affects
the break even point between object and page server per-
formance. Without the opportunistic log, an object server
must have a much more efficient client cache to outperform
a page server. With the opportunistic log a small improve-
ment suffices.

In contrast to previous studies that compared object and
page systems, our work is the first to identify and explore
the fundamental tradeoff between the efficiency of an object
cache and the cost of installation reads. Although there
exists substantial work on intelligent disk scheduling of
deferred writes, we are the first to take advantage of the
opportunity to schedule the large pool of installation reads
that are important to the performance of object servers.

Modern storage systems have not paid sufficient atten-
tion to optimizing installation reads. Our simulation re-
sults strongly suggest that this previously overlooked factor
should be considered in future storage architectures.

Acknowledgments

We would like to thank the ASPLOS and OSDI referees for
their comments. Thanks especially to referee #6, for one
paragraph of our conclusion, and to Karsten Schwan, for
serving as the shepherd for our paper. We also thank our
readers: Brian Bershad, Gregory Ganger, David Gifford,
Maurice Herlihy, Barbara Liskov, and John Wroclawski.

References

[1] Atul Adya. A Distributed Commit Protocol for Optimistic
Concurrency Control. Master’s thesis, Massachusetts Insti-
tute of Technology, February 1994.

[2] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained
Sharing in a Page Server OODBMS. In Proceedings of
SIGMOD 1994, 1994.

[3] Jia-bing R. Cheng and A. R. Hurson. On the Performance
Issues of Object-Based Buffering. In Proceedings of the
Conference on Parallel and Distributed Information Sys-
tems, pages 30–37, 1991.

[4] M. Day. Managing a Cache of Swizzled Objects and Surro-
gates. PhD thesis, MIT-EECS, In preparation.

[5] W. de Jonge, F. Kaashoek, and W. Hsieh. The Logical
Disk: A New Approach to Improving File Systems. In Proc.
of the 14th Symposium on Operating Systems Principles,
Asheville, NC, December 1993. ACM.

[6] O. Deux et al. The Story of O2. IEEE Trans. on Knowledge
and Data Engineering, 2(1):91–108, March 1990.

[7] David J. DeWitt, Philippe Futtersack, David Maier, and Fer-
nando Velez. A Study of Three Alternative Workstation-
Server Architectures for Object Oriented Database Systems.

In Proceedings of the 16th Conference on Very Large Data
Bases, pages 107–121, Brisbane, Australia, 1990.

[8] R. English and A. Stepanov. Loge: a Self-Organizing Disk
Controller. In Proceedings of Winter USENIX, 1992.

[9] S. Ghemawat. Disk Management for Object-Oriented
Databases. PhD thesis, MIT-EECS, In preparation.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[11] M. Hornick and S. Zdonik. A Shared, Segmented Memory
System for an Object-Oriented Database, pages 273–285.
Morgan Kaufmann, 1990.

[12] Object Design Inc. An Introduction to Object Store, Release
1.0. Burlington, Massachusetts, 1989.

[13] David M. Jacobson and John Wilkes. Disk Scheduling Algo-
rithms Based on Rotational Position. Technical Report HPL-
CSP-91-7, Hewlett-Packard Laboratories, February 1991.

[14] Alfans Kemper and Donal Kossman. Dual-Buffering Strate-
gies in Object Bases. In Proceedings of the 20th Conference
on Very-Large Databases, Santiago, Chile, 1994.

[15] W. Kim et al. Architecture of the ORION Next-Generation
Database System. IEEE Trans. on Knowledge and Data
Engineering, 2(1):109–124, June 1989.

[16] Samuel J. Leffler, Marshall Kirk McKusick, Michael J.
Karels, and John S. Quarterman. The Design and Imple-
mentation of the 4.3bsd UNIX Operating System. Addison-
Wesley, 1989.

[17] B. Liskov, M. Day, and L. Shrira. Distributed Object Man-
agement in Thor. In M. Tamer Özsu, Umesh Dayal, and
Patrick Valduriez, editors, Distributed Object Management.
Morgan Kaufmann, San Mateo, California, 1993.

[18] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp File System. In
Proceedings of the 13th ACM Symposium on Operating Sys-
tems Principles, 1991.

[19] D. Maier and J. Stein. Development and Implementation of
an Object-Oriented DBMS. In B. Shriver and P. Wegner, edi-
tors, Research Directions in Object-Oriented Programming.
MIT Press, 1987.

[20] Jeffrey C. Mogul. A Better Update Policy. In USENIX
Summer Conference, Boston, 1994.

[21] James O’Toole and Liuba Shrira. Hybrid Caching for Large-
Scale Object Systems. In Proceedings of the 6th Workshop
on Persistent Object Systems, Tarascon, France, September
1994. ACM.

[22] M. Rosenblum and J.K. Ousterhout. The Design and Imple-
mentation of a Log Structured File System. In Proc. of the
13th Symposium on Operating Systems Principles, Pacific
Grove, CA, October 1991. ACM.

[23] Chris Ruemmler and John Wilkes. Modelling Disks. Techni-
cal Report HPL-93-68rev1, Hewlett-Packard Laboratories,
December 1993.

[24] M. Satyanarayanan, H. Mashburn, P. Kumar, D. Steere, and
J. Kistler. Lightweight Recoverable Virtual Memory. In
Proc. of the 14th Symposium on Operating Systems Princi-
ples, Asheville, NC, December 1993. ACM.

[25] M. Seltzer, P. Chen., and J. Ousterhout. Disk Scheduling
Revisited. In Proceedings of Winter USENIX, 1990.

