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Abstract
This paper describes TimeLine, an efficient archive service for

a distributed storage system. TimeLine allows users to take snap-
shots on demand. The archive is stored online so that it is easily
accessible to users. It enables “time travel” in which a user runs a
computation on an earlier system state.

Archiving is challenging when storage is distributed. In par-
ticular, a key issue is how to provide consistent snapshots, yet
avoid stopping user access to stored state while a snapshot is be-
ing taken. The paper defines the properties that an archive service
ought to provide and describes an implementation approach that
provides the desired properties yet is also efficient. TimeLine is
designed to provide snapshots for a distributed persistent object
store. However the properties and the implementation approach
apply to file systems and databases as well.

TimeLine has been implemented and we present the results of
experiments that evaluate its performance. The experiments show
that computations in the past run well when the archive store is
nearby, e.g., on the same LAN, or connected by a high speed link.
The results also show that taking snapshots has negligible impact
on the cost of concurrently running computations, regardless of
where the archived data is stored.

1 INTRODUCTION

This paper describes TimeLine, an efficient archive ser-
vice for a storage system. TimeLine allows users to take
snapshots of system state on demand, either by issuing a
command, and/or by running a program that requests snap-
shots periodically, e.g., once every six hours. The archive
containing the snapshots is stored online so that it is easily
accessible to users.

Access to the archive is based on time. Each snapshot
is assigned a timestamp, reflecting the time at which it was
requested. The archive enables “time travel” in which users
can run computations “in the past.” The user indicates the
time at which the computation should run. The snapshot
used to run the computation is the latest one whose times-
tamp is no greater than the specified time. We chose to use
a time-based interface because we believe it matches user
needs. Note however that users can easily build directory
structures that allow them to associate names with snap-
shots.

TimeLine is designed to provide access to old states
of objects in the Thor persistent object store (Thor [2, 13,
14]). Thor is a distributed system in which storage resides
at many servers; it is designed to scale to very large size,

with a large number of servers that are geographically dis-
tributed. Thor allows users to run computations that access
the current states of objects; TimeLine extends this interface
so that users can also run computations that access earlier
states of objects.

The key issue in providing an archive is providing con-
sistent snapshots without disrupting user access to stored
state while a snapshot is being taken. This issue arises in
any kind of storage system, not just a persistent object store.
Consistency without disruption is easy to provide when all
storage resides at a single server but challenging when stor-
age is distributed.

To our knowledge, TimeLine is the first archive for a
distributed storage system that provides consistent snapshots
without disruption. Most other archive systems (e.g., [8,24,
31]) disrupt user access to a greater or lesser extent while a
snapshot is being taken. Elephant [26] does not cause such
a disruption, but it is not a distributed system. In addition,
Elephant snapshots all data; by taking snapshots on com-
mand we reduce archive storage and CPU costs associated
with taking snapshots.

TimeLine has been implemented and we present the re-
sults of experiments that evaluate its performance. Our ex-
periments show that taking snapshots has negligible impact
on the cost of running computations that are using the “cur-
rent” system state. We also present results showing the cost
of using snapshots, i.e., running computations in the past.
Our experiments show that computations in the past run as
well as those in the present when the archive state is co-
located with the current system state. However, it is not
necessarily desirable to co-locate storage like this, since the
archived state can become very large. Therefore we looked
at a range of options for using shared storage for snapshots.
Our results show that good performance for computations
in the past is possible using shared archive storage provided
it is reasonably close, e.g., on the same LAN, or connected
by a high speed link. The results also show that the cost
of running computations in the present while archiving is
occurring is insensitive to where the archived data is stored.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses requirements for an archive system and de-
scribes our approach for providing consistency without dis-
ruption. Sections 3 to 6 describe TimeLine and its imple-
mentation. Section 7 presents our performance results and
Section 8 discusses related work. We conclude in Section 9.



2 SNAPSHOT REQUIREMENTS

This section defines requirements for an archive service
and describes our approach to satisfying them.

An archive must provide global consistency [18]:

• Consistency. A snapshot must record a state that could
have existed at some moment in time.

Typically, an application controls the order of writes by
completing one modification before starting another, i.e., by
ensuring that one modification happens before another [11].
Then, a snapshot must not record a state in which the sec-
ond modification has occurred but the first has not.

However, we cannot afford to disrupt activities of other
users:

• Non-Disruption. Snapshot should have minimal im-
pact on system access: users should be able to access
the system in parallel with the taking of the snapshot
and the performance of user interactions should be
close to what can be achieved in a system without
snapshots.

Note that non-disruption is typically not a requirement for
a backup system, since backups tend to be scheduled for
times when there is little user activity. In contrast, our sys-
tem allows snapshots to be taken whenever users want, and
if snapshotting isn’t implemented properly, the impact on
concurrent users can be unacceptable.

One way to get a consistent snapshot is to freeze the
system. In a distributed system, freezing requires a two-
phase protocol (such a protocol is used in [31]). In phase 1
each node is notified that a snapshot is underway. When a
node receives this message, it suspends processing of user
requests (and also notes that modifications that have hap-
pened up to that point will be in the snapshot but later ones
will not). The coordinator of the protocol waits until it re-
ceives acks from all nodes. Then in phase 2 it notifies all
nodes that the freeze can be lifted. Freezing provides con-
sistency because it ensures that if a modification to x is not
reflected in a snapshot, this modification will be delayed
until phase 2, and therefore any modification that happened
after it will also not be included in the snapshot. Freezing
is necessary since otherwise x’s node would not delay the
modification to x and therefore the snapshot could observe
some modification that happened after the modification of
x, yet miss the modification of x.

Doing snapshots by freezing the system obviously does
not satisfy our non-disruption goal. The approach is par-
ticularly problematical in a large-scale distributed system:
when there are many nodes that may be widely distributed,
the time required to run the protocol can be large. Also, if
any storage node is down or not communicating, the freeze
can last a very long time.

An alternative implementation is to record the informa-
tion about the snapshot at one server, and have every server
check this information before carrying out a modification.

This approach is even less desirable than freezing, since it
delays every modification.

We can avoid these problems if the system records in-
formation about happens before. This can be accomplished
as follows: Each node includes its local time in every mes-
sage it sends, and a node can perform a modification when
the time of its own clock is later than any time it already
heard of. (This protocol is a variation on one proposed
in [17].) For example, if a user reads information from
server X and then writes to server Y, information about server
X’s timestamp will flow to server Y, and server Y will de-
lay performing the modification until its clock is larger than
server X’s clock was when it performed the modification
to x. Note that the approach is cheap to implement and in
practice modifications are unlikely to be delayed, provided
server clocks are loosely synchronized.

Assuming timestamps as just described, we can imple-
ment snapshots as follows. A single server acts as the snap-
shot coordinator. To take a snapshot, a user communicates
with this server. The server assigns a timestamp to the snap-
shot by reading its local clock. Information about the snap-
shot then flows to all servers, but this can be done in the
background. The timestamp determines what modifications
are contained in the snapshot: the snapshot includes mod-
ifications that occurred earlier than this time but not those
that occurred after this time. To make this work, nodes need
to track when modifications happen. This could be done by
associating a “time-last-modified” timestamp with each ob-
ject but in fact only information about recent modifications
is needed, as discussed in Section 4.

The approach provides consistency without disruption.
Taking a snapshot requires communication with the snap-
shot coordinator, which must be up and communicating.
But such communication is also needed when all storage
is at a single server and in either case, we can increase
availability by using standard replication (e.g., [21]). There
could be more than one snapshot coordinator; then snap-
shots would be ordered relative to modifications by using
vector clocks [10, 23] with an entry for each coordinator.

With this approach it is possible that users might no-
tice anomalies [6, 11]: a snapshot might fail to include a
modification that a person knows happened before it, or it
might include a modification that a person knows happened
after it. Such anomalies require communication outside the
system. E.g., if Bob takes a snapshot after being told by
Alice that a certain modification has been made, the snap-
shot might nevertheless miss this modification. Anomalies
are highly unlikely because current time synchronization
technologies, such as NTP [20], synchronize clocks tightly
enough to prevent them. Thus, the timestamp assigned to
Bob’s snapshot is highly likely to be greater than that of Al-
ice’s modification. (A similar use of loosely synchronized
clocks to avoid such anomalies was proposed in [15].)



3 CREATING SNAPSHOTS

TimeLine provides snapshots for objects in Thor [13,
14]. This section provides a brief overview of Thor and then
describes what happens when a user requests a snapshot.

3.1 Overview of Thor

Thor is a persistent object store based on the client-
server model. Servers provide persistent storage for objects;
we call these object repositories (ORs). User code runs
at client machines and interacts with Thor through client-
side code called the front end (FE). The FE contains cached
copies of recently used objects.

A user interacts with Thor by running atomic transac-
tions. An individual transaction can access (read and/or
modify) many objects. A transaction terminates by com-
mitting or aborting. If it commits all modifications become
persistent; if it aborts none of its changes are reflected in the
persistent store.

Thor employs optimistic concurrency control to provide
atomicity. The FE keeps track of the objects used by the
current transaction. When the user requests to commit the
transaction, the FE sends this information, along with the
new states of modified objects, to one of the ORs. This OR
decides whether a commit is possible; it runs a two-phase
commit protocol if the transaction made use of objects at
multiple ORs.

Thor uses timestamps as part of the commit protocol.
Timestamps are globally unique: a timestamp is a pair, con-
sisting of the time of the clock of the node that produced it,
and the node’s unique ID. Each transaction is assigned a
timestamp, and can commit only if it can be serialized af-
ter all transactions with earlier timestamps and before all
transactions with later timestamps.

Thor provides highly available and reliable storage for
its objects, either by replicating their storage at multiple
nodes using primary/backup replication, or by careful use
of disk storage.

3.2 Taking a Snapshot

To create a snapshot, a user communicates with one of
the ORs, which acts as the snapshot coordinator. This OR
(which we will refer to as the SSC) assigns a timestamp to
the snapshot by reading its local clock. The SSC serializes
snapshot requests so that every snapshot has a unique times-
tamp, and it assigns later timestamps to later snapshots. It
also maintains a complete snapshot history, which is a list
of the assigned timestamps, and records this information
persistently.

Once a snapshot request has been processed by the SSC,
information about the snapshot must flow to all the ORs,
and we would like this to happen quickly so that usually
ORs have up-to-date information about snapshots. We could
propagate snapshot information by having the SSC send the

information to each OR, or we could have ORs request the
information by frequent communication with the SSC, but
these approaches impose a large load on the SSC if there
are lots of ORs. Therefore, instead we propagate history
information using gossip [3]: history information is piggy-
backed on every message in the system.

A problem with using gossip is that if the timestamp
of the most recent snapshot in the piggybacked history is
old, this might mean that no more recent snapshot has been
taken, or it might mean that the piggybacked information is
out of date. We distinguish these cases by having the SSC
include its current time along with the snapshot history, thus
indicating how recent the information is.

Gossip alone might not cause snapshot history informa-
tion to propagate fast enough. To speed things up, we can
superimpose a distribution tree on the ORs. To start the in-
formation flowing the SSC notifies a subset of ORs (those
at the second level of the tree) each time it creates a new
snapshot, and also periodically, e.g., every few seconds.

ORs can always fall back on querying the SSC (or one
another) when snapshot information is not propagated fast
enough. Even if the SSC is unreachable for a period of time,
e.g., during a network partition, our design (see Section 4)
ensures that the ORs still function correctly.

By using timestamps for snapshots, we are able to seri-
alize snapshots with respect to user transactions: a snapshot
reflects modifications of all user transactions with smaller
timestamps. Serializing snapshots gives us atomicity, which
is stronger than consistency. For example, we can guar-
antee that snapshots observe either all modifications of a
user transaction, or none of them. However the approach
of using timestamps also works in a system that provides
atomicity for individual modifications but no way to group
modifications into multi-operation transactions.

3.3 Snapshot Messages

Over time the snapshot history can become very large.
However, usually only very recent history needs to be sent,
because the recipient will have an almost up to date history
already.

Therefore, our piggybacked snapshot messages contain
only a portion of the snapshot history. In addition, a snap-
shot message contains two timestamps, TScurr and TSprev,
that bound the information in the message: the message
contains the timestamps of all snapshots that happened after
TSprev and before TScurr.

An OR can accept a snapshot message m if m.TSprev

is less than or equal to the TScurr of the previous snapshot
message that the OR accepted. Typically TSprev is chosen
by the sender to be small enough that the receiver is highly
likely to be able to accept a message. Even with a TSprev

quite far in the past, the number of snapshot timestamps
in the message is likely to be small. In fact, we expect a
common case is that the message will contain no snapshot



timestamps, since the rate of taking snapshots is low relative
to the frequency at which history information is propagated.

If a node is unable to accept a snapshot message, it can
request the missing information from another node, e.g., the
sender.

4 STORING SNAPSHOTS

This section and the two that follow describe the main
functions of TimeLine. This section decribes how the OR
saves snapshot information in the archive. Section 5 de-
scribes the archive service, which stores snapshot informa-
tion when requested to do so by ORs and also provides ac-
cess to previously stored snapshots. Section 6 describes
how TimeLine carries out user commands to run compu-
tations in the past.

4.1 Design Overview

TimeLine provides snapshots by using a combination
of current pages at ORs and pages stored in the archive. In
particular, if a page has not been modified since a snapshot
occurred, then the copy on the OR disk contains the proper
information. On the other hand, if the page has been mod-
ified, its previous state needs to be written to the archive
before its disk copy is overwritten. Thus we use a copy-on-
write scheme, specialized to work for snapshots.

To create a snapshot page the OR needs to know all
snapshots whose timestamps are less than t, the maximum
timestamp of any transaction whose modification is being
recorded on disk by overwriting the page. A fundamental
problem with a gossip scheme, however, is that an OR’s his-
tory information is never completely up to date. Therefore
it might not know about all snapshots whose timestamps are
less than t. In particular, since gossip takes time to arrive,
an OR won’t know about timestamps of snapshots that were
taken very recently.

We could solve this problem by creating snapshot pages
just in case they are needed, but that is expensive, espe-
cially since most of the time they won’t be needed. Instead,
we would like to avoid unnecessary creation of snapshot
pages. We accomplish this by delaying overwriting of pages
on disk until we know whether snapshot pages are needed.
Our approach is based on details of the OR implementation,
which is discussed in the next section.

4.2 Thor ORs

This section describes relevant details of how Thor ORs
are implemented.

Thor stores objects in 8KB pages. Typically objects are
small and there are many of them in a page. Each page
belongs to a particular OR. An object is identified uniquely
by the 32-bit ORnum of its OR and a 32-bit OREF that is
unique within its OR. The OREF contains the PageID of the
object’s page and the object’s offset within the page.

The FE responds to a cache miss by fetching an entire
page from the OR, but only modified objects are shipped
back from a FE to an OR when the transaction commits.
This means that in order to write the modifications to the
page on disk, the OR will usually need to do an installation
read to obtain the object’s page from disk. If we had to
do this read as part of committing a transaction, it would
degrade system performance.

Therefore instead the OR uses a volatile Modified Ob-
ject Buffer (MOB) [5] to store modifications when a trans-
action commits, rather than writing them to disk immedi-
ately. This approach allows disk reads and writes to be de-
ferred to a convenient time and also enables write absorp-
tion, i.e., the accumulation of multiple modifications to a
page so that these modifications can be written to the page
in a single disk write. Use of the MOB thus reduces disk
activity and improves system performance.

Using the MOB does not compromise the correctness of
the system because correctness is guaranteed by the trans-
action log: modifications are written to the transaction log
and made persistent before a transaction is committed.

Entries are removed from the MOB when the respec-
tive modifications are installed in their pages and the pages
are written back to disk. Removal of MOB entries (clean-
ing the MOB) is done by a flusher thread that runs in the
background. This thread starts to run when the MOB fills
beyond a pre-determined high watermark and removes en-
tries until the MOB becomes small enough. The flusher
processes the MOB in log order to facilitate the truncation
of the transaction log. For each modification it encounters,
it reads the modified object’s page from disk, installs all
modifications in the MOB that are for objects in that page,
and then writes the updated page back to disk. When the
flusher finishes a pass of cleaning the MOB it also removes
entries for all transactions that have been completely pro-
cessed from the transaction log.

The OR also has a volatile page buffer that it uses to
satisfy FE fetch requests. Before returning a page to the re-
questing FE, the OR updates the buffer copy to contain all
modifications in the MOB for that page. This ensures that
pages fetched from the OR always reflect committed trans-
actions. Pages are flushed from the page buffer as needed
(LRU). Dirty pages are simply discarded rather than being
written back to disk; the flusher thread is therefore the only
part of the system that modifies pages on disk.

4.3 The Anti-MOB

Our implementation takes advantage of the MOB to de-
lay the writing of snapshot pages until the snapshot history
is sufficiently up to date.

To know whether to create snapshot pages, an OR needs
to know the current snapshot status for each of its pages.
This information is kept in its snapshot page map, which
stores a timestamp for each page. When a snapshot page



for page p is created due to snapshot s, the corresponding
snapshot page map entry is updated with the timestamp of
s. All snapshot page map entries are initially zero. Snap-
shots of a page are created in timestamp order; therefore
if the snapshot page map entry for a page has a timestamp
greater than that of a snapshot, the OR must have already
created a snapshot copy of the page for that snapshot.

An OR also stores what it knows of the snapshot his-
tory together with Tgmax, the highest SSC timestamp it has
received.

Recall that the only time pages are overwritten on disk
is when the MOB is cleaned. Therefore we can also cre-
ate snapshot pages as part of cleaning the MOB. Doing so
has two important advantages. First, it allows us to benefit
from the installation read already being done by the flusher
thread. Second, because the flusher runs when the MOB
is almost full, it works on transactions that committed in
the past. Thus, by the time a transaction’s modifications
are processed by the flusher, the OR is highly likely to have
snapshot information that is recent enough to know whether
snapshot pages are required.

A simple strategy is to start with the page read by the
flusher thread and then use the MOB to obtain the right state
for the snapshot page. For example, suppose the MOB con-
tains modifications for two transactions T1 and T2, both of
which modified the page, and suppose also that the snapshot
for which the snapshot page is being created has a times-
tamp that is greater than T1 but less than T2. Then we need
to apply T1’s modifications to the page before writing it to
the archive.

However, this simple strategy doesn’t handle all the sit-
uations that can arise, for three reasons. First, if the page
being processed by the flusher thread is already in the page
buffer, the flusher does not read it from disk. But in this
case, the page already reflects modifications in the MOB,
including those for transactions later than the snapshot. We
could get the pre-states for these modifications by re-reading
the page from disk, but that is undesirable. Hence, we need
a way to revert modifications.

A second problem is that if a transaction modifies an
object that already has an entry in the MOB (due to an older
transaction), the old MOB entry is overwritten by the new
one. However, we may need the overwritten entry to create
the snapshot page.

Finally, if the MOB is processed to the end, we will en-
counter modifications that belong to transactions committed
after Tgmax. Normally we avoid doing this: the flusher does
not process MOB entries recording modifications of trans-
actions with timestamps greater than Tgmax. But sometime
the flusher must process such entries – when propagation of
the snapshot history is stalled. When this happens we must
be able to continue processing the MOB since otherwise
the OR will be unable to continue committing transactions.
But to do so, we need a place to store information about the
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Figure 1. Structure of the Anti-MOB

pre-image of the page before it is overwritten on disk.
The OR uses an in-memory buffer called the Anti-MOB

to store overwritten MOB entries and transaction pre-images.
The Anti-MOB (like the MOB) records information about
objects. As shown in Figure 1, each Anti-MOB entry con-
tains a pointer to the object’s pre-image in the OR’s heap,
which it shares with the MOB. The entry also contains the
timestamp of the pre-image’s transaction, i.e., the transac-
tion that caused that pre-image to be stored in the Anti-
MOB. For example, if T2 overwrites an object already writ-
ten by T1, a pointer to the older version of the object is
stored in the Anti-MOB along with T2’s timestamp. Note
that we don’t make a copy of the old version; instead we
just move the pointer to it from the MOB to the Anti-MOB.

Information is written to the Anti-MOB only when it
is needed or might be needed. The Anti-MOB is usually
needed when an object is overwritten, since the committing
transaction is almost certain to have a timestamp larger than
Tgmax. But when a page is read from disk in response to a
fetch request from an FE, a modification installed in it might
be due to a transaction with an old enough timestamp that
the OR knows the pre-state will not be needed.

In addition, the first time an object is overwritten, we
may create an additional Anti-MOB entry for the transac-
tion that did the original write. This entry, which has its
pointer to the pre-image set to null, indicates that the pre-
image for that transaction is in the page on disk. For ex-
ample, suppose transaction T1 modified object x and later
transaction T2 modifies x. When the OR adds T2’s modi-
fied version of x to the MOB, it also stores < T2, x, x1 >

in the Anti-MOB to indicate that x1 (the value of x created
by T1) is the pre-image of x for T2. Furthermore, if T1’s
modification to x was the first modification to that object by
any transaction currently recorded in the MOB and if there
is or might be a snapshot S before T1 that requires a snap-
shot page for x’s page, the OR also adds < T1, x, null > to
the Anti-MOB, indicating that for S, the proper value of x
is the one currently stored on disk.
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4.3.1 Creating Snapshot Pages

Now we describe how snapshot pages are created. Fig-
ure 2 shows the design of the snapshot subsystem, which
works in tandem with the OR’s MOB and transaction log.
The work of taking snapshots is done partly by the flusher
thread and partly by the snapshot thread, which also works
in the background.

Snapshot pages are produced using both the MOB (to
apply modifications) and the Anti-MOB (to revert modi-
fications). As mentioned, to install a modification in the
MOB, the flusher thread reads the page from disk if nec-
essary. Then, it goes through the MOB and applies each
modification for that page to the in-memory copy provided
the transaction that made the modification has a timestamp
less than some bound. Typically this bound will be Tgmax,
but occasionally (when the history information is old), it
will be larger than this.

Before applying a modification to the page, the flusher
decides whether a pre-image is or might be needed. The
pre-image might be needed if the transaction that did the
modification has a timestamp greater than Tgmax; it will be
needed if the OR knows of a snapshot with timestamp less
than that of the transaction, and where the entry for the page
in the snapshot page map is less than that of the snapshot.

To make a pre-image the flusher copies the current value
of the modified object, x, from the page into the heap before
overwriting the object. If there is no entry in the Anti-MOB
for x and T, the transaction that caused that modification,
it creates one; this entry points to x’s value in the heap.
Otherwise, if there is an Anti-MOB entry for x containing
null, the flusher modifies the entry so that it now points to
x’s value in the heap.

If the page being modified is already in the page cache,
the flusher applies the modifications to this copy. If this
copy already contains modifications, the appropriate pre-
images will exist in the Anti-MOB because they were put
there as part of carrying out the fetch request for that page.

Once the flusher has applied the modifications to the
page, and assuming a snapshot is required for the page, it
makes a copy of the page and then uses the Anti-MOB to
revert the page to the proper state. To undo modifications
to page P as needed for a snapshot S with timestamp S.t,
the OR scans the portion of the Anti-MOB with timestamps

Let SCAN(P,S) = set of objects scanned for page P
for snapshot S and initialized to ∅

for each entry Ui in the Anti-MOB for a transaction
with timestamp ≥ S’s timestamp, S.t

if Ui.Oref < SCAN(P,S) then
SCAN(P,S) = SCAN(P,S) ∪ {Ui.Oref}
install Ui into P

endif
end

Figure 3. Algorithm for Creating Snapshot Pages

greater than S.t for pre-images corresponding to modifica-
tions to P and installs them in P. The algorithm used for
creating snapshot pages is shown in Figure 3. The Anti-
MOB can contain several pre-images corresponding to a
single object. However, only the pre-image of the oldest
transaction more recent than a snapshot will contain the cor-
rect version of the object for that snapshot. The algorithm
uses the SCAN set to keep track of pre-images scanned and
ensure that only the correct pre-image corresponding to an
object (i.e., the first one encountered) is used for creating
the snapshot page.

A snapshot page belongs to the most recent snapshot, S,
with timestamp less than that of the earliest transaction, T,
whose pre-image is placed in the page. The OR can only
know what snapshot this is, however, if T has a timestamp
less than Tgmax. Therefore snapshot pages are produced
only when this condition holds. Section 4.5 discusses what
happens when the OR cleans the MOB beyond Tgmax.

The snapshot page must be made persistent before the
disk copy of the page can be overwritten. We discuss this
point further in Section 4.4.

4.3.2 Discarding Anti-MOB Entries

Entries can be discarded from the Anti-MOB as soon as
they are no longer needed for making snapshot pages.

The flusher makes snapshot pages up to the most recent
snapshot it knows about for all pages it modifies as part of a
pass of cleaning the MOB. At the end of this pass all entries
used to make these snapshot pages can be deleted from the
Anti-MOB. Such entries will have a timestamp that is less
than or equal to Tgmax (since all snapshot pages for P for
snapshots before Tgmax will have been made by that point).

When new snapshot information arrives at an OR, the
OR updates Tgmax. Then it can re-evaluate whether Anti-
MOB entries can be discarded. More specifically, when the
OR advances its Tgmax from t1 to t2, it scans its Anti-MOB
for entries with timestamps between t1 and t2. An entry
can be discarded if the corresponding snapshot page of the
most recent snapshot with a timestamp smaller than itself
has already been created. Usually, all such entries will be
removed (because there is no snapshot between t1 and t2).



4.4 Persistence and Failure Recovery

Once a page has been modified on disk, the Anti-MOB
is the only place where pre-images exist until the snapshot
pages that require those pre-images have been written to the
archive. Yet the Anti-MOB is volatile and would be lost if
the OR failed.

Normally snapshot pages are created as part of cleaning
the MOB, and we could avoid the need to make informa-
tion in the Anti-MOB persistent by delaying the overwrite
of a page on disk until all its snapshot pages have been writ-
ten to the archive. However, we decided not to implement
things this way because the write to the archive might be
slow (if the snapshot page is stored at a node that is far
away in network distance). Also, there are cases where we
need to overwrite the page before making snapshot pages,
e.g., when propagation of snapshot history stalls (see Sec-
tion 4.5).

Therefore we decided to make use of a snapshot log as a
way of ensuring persistence of pre-images. Pre-images are
inserted into the snapshot log as they are used for revert-
ing pages to get the appropriate snapshot page. Thus, the
creation of a snapshot page causes a number of entries for
that page to be added to the snapshot log. Together, these
entries record all pre-images for objects in that page whose
modifications need to be reverted to recover the snapshot
page.

Before a page is overwritten on disk, snapshot log en-
tries containing the pre-images of modifications to the page
are flushed to disk (or to the OR backups). The snapshot
page can then be written to the archive asynchronously. Note
that we can write snapshot log entries to disk in a large
group (covering many snapshot pages) and thus amortize
the cost of the flush.

Entries can be removed from the snapshot log once the
associated snapshot pages have been saved to the archive.

4.4.1 Recovery of Snapshot Information

When the OR recovers from a failure, it recovers its
snapshot history by communicating with another OR, ini-
tializes the MOB and Anti-MOB to empty, and initializes
the snapshot page map to have all entries “undefined”. Then
it reads the transaction log and places information about
modified objects in the MOB. As it does so, it may create
some Anti-MOB entries if objects are overwritten. Then it
reads the snapshot log and adds its entries to the Anti-MOB.
The snapshot log is processed by working backwards. For
example, suppose P required two snapshot pages PS1 and
PS2 for snapshots S1 and S2 respectively (S1.t < S2.t). To
recover PS1 , the system reads P from disk, applies the en-
tries in the snapshot log for PS2 , and then applies the entries
for PS1 .

At this point, the OR can resume normal processing,
even though it doesn’t yet have correct information in the
snapshot page map. The OR obtains this information from

the archive. For example, when it adds an entry to the MOB,
if the entry for that page in the snapshot page map is un-
defined, the OR requests the snapshot information from the
archive. This is done asynchronously, but by the time the in-
formation is needed for cleaning the MOB, the OR is highly
likely to know it.

4.5 Anti-MOB Overflow

When propagation of snapshot history information stalls,
the OR must clean the MOB beyond Tgmax and this can
cause the Anti-MOB to overflow the in-memory space allo-
cated to it. Therefore at the end of such a cleaning, we push
the current contents of the Anti-MOB into the snapshot log
and force the log to disk. Then we can clear the Anti-MOB,
so that the OR can continue inserting new entries into it.

When the OR gets updated snapshot information and
advances its Tgmax, it processes the Anti-MOB blocks pre-
vious written to the snapshot log. It does this processing
backward, from the most recently written block to the ear-
liest block. Each block is also processed backward. Of
course, if the OR learns that no new snapshots have been
taken, it can avoid this processing and just discard all the
blocks. It can also stop its backward processing as soon as
it reaches a block all of whose entries are for transactions
that are earlier than the earliest new snapshot it just heard
about.

To process a block, the OR must use the appropriate
page image. The first time it encounters an entry for a par-
ticular page, this will be the current page on disk. But later,
it needs to use the page that it already modified. Therefore
the OR uses a table that records information about all pages
processed so far. These pages will be stored in memory if
possible, and otherwise on disk.

Once snapshot pages have been written to the archive,
the OR removes the Anti-MOB blocks from the snapshot
log and discards all the temporary pages used for processing
the blocks.

5 ARCHIVING SNAPSHOTS

This section describes the design of the archive store.
We require that the archive provide storage at least as re-
liable and available as what Thor provides for the current
states of objects. For example, if Thor ORs are replicated,
snapshot pages should have the same degree of replication.

5.1 Archive Store Abstraction

Table 1 shows the interface to the archive. It provides
three operations: put, get, and getTS.

The put operation is used to store a page in the archive.
Its arguments provide the value of the snapshot page and its
identity (by giving the ORnum of its OR, its PageID within
the OR, and the timestamp of the snapshot for which it was
created). The operation returns when the page has been



Operation Description
put(ORnum, PageID, TSss, Pagess) Stores the snapshot

page Pagess into the
archive

get(ORnum, PageID, TSss) Retrieves the snap-
shot page from the
archive.

getTS(ORnum, PageID) Retrieves the latest
timestamp for the
page.

Table 1. Interface to the Archive

stored reliably, e.g., written to disk, or written to a sufficient
number of replicas.

The get operation is used to retrieve a page from the
archive. Its arguments identify the page by giving its OR-
num and PageID, and the timestamp of the snapshot of in-
terest. If the archive contains a page with that identity and
timestamp, it returns it. Otherwise, if there is a later snap-
shot page for that page, it returns the oldest one of these.
Otherwise it returns null.

It is correct to return a later snapshot page because of the
way we produce snapshot pages: we only produce them as
pre-images before later modifications. If there is no snap-
shot page with the required timestamp but there is a later
one, this means there were no changes to that page between
the requested snapshot and the earliest later snapshot, and
therefore the information stored for the later snapshot is also
correct for this snapshot.

The getTS operation takes an ORnum and PageID as ar-
guments. It returns the latest timestamp of a snapshot page
for the identified page; it returns zero if there is no snapshot
for that page. It is used by the OR to reinitialize its snapshot
page map when it recovers from a failure.

5.2 Archive Store Implementations

We considered three alternatives for implementing the
archive store: a local archive store at each OR, a network
archive store on the local area network, and an archive store
on servers distributed across a wide area network.

A local archive store archives the snapshot pages cre-
ated at its OR. As we will discuss further in Section 6, all
snapshot pages are fetched via the OR. Therefore this ap-
proach will provide the best performance (for transactions
on snapshots) as compared to the other two implementa-
tions. On the other hand, the archive can potentially be-
come very large. In addition, ORs may differ widely in how
much archive space they require, so that it may be desirable
to allow sharing of the archive storage.

In a network archive store, snapshots are archived in a
specialized storage node located close to a group of ORs,
e.g., on the same LAN. This design allows sharing of what
might be a high-end storage node or nodes, e.g., a node with
a disk array that provides high reliability. The impact of a
network archive store on the performance of fetching snap-

Local archive store
(on a separate disk)

Maps the timestamp to
the page map for the
snapshot associated
with the timestamp

Top−level map

Maps the ORnum and PageID
to the location of the page in the
archive store (identical to the
original page map in THOR)

Second−level map
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Figure 4. Storage System of an Archive Store Node

shot pages depends on the speed of the underlying network
connection. For example, on a gigabit LAN, we expect the
performance of the network archive store to be close to that
of a local archive store.

A distributed archive store is implemented as a set of
storage nodes that are distributed across the wide area net-
work. All ORs share the archive store and therefore this ap-
proach allows even more sharing than the network archive
store. Also, with proper design, the system can provide ex-
cellent reliability, automatic load-balancing, and self-orga-
nization features, similar to what can be achieved, e.g., in
peer-to-peer systems [25,28]. The downside of this scheme
is that the data may be located far away from the ORs, mak-
ing it costly to run transactions on snapshots.

We expect the choice of where to place the archive store
to mainly affect the cost of running computations on snap-
shots. All designs should perform similarly with respect to
taking snapshots since writing snapshot pages to the archive
is done asynchronously.

5.3 Implementation Details

In this section, we describe the archive store implemen-
tations.

In a local archive store, snapshots are stored on a sepa-
rate disk (or disks) so that requests to read or write snapshot
pages don’t interfere with normal OR activity, e.g., fetching
current pages.

The disk is organized as a log as shown in Figure 4.
Snapshots pages are appended to the log, along with their
identifier (ORnum, PageID, and timestamp of the snapshot
for which the snapshot page was created). This organiza-
tion makes writing of snapshot pages to disk fast (and we
could speed it up even more by writing multiple pages to
the log at once). A directory structure is maintained in pri-
mary memory to provide fast access to snapshot pages. The
identifier information in the log allows the OR to recover
the directory from the log after a failure.

A network archive store uses the same log-structured



organization for its disk. The OR runs a client proxy that
receives calls of archive operations such as put, turns them
into messages, and communicates with the storage server
using UDP.

Each storage node in a distributed archive store also
uses the same log-structured organization. These nodes may
be ORs, separate storage nodes, or a combination of the
two.

Again, each OR runs a client proxy that handles calls
of archive operations. But now the proxy has something
interesting to do.

The main issue in designing a distributed archive store
is deciding how to allocate snapshot pages to storage nodes.
We decided to base our design on consistent hashing [9].
With this approach each storage node in the (distributed)
archive store is assigned an identifier, its nodeID, in a large
(160 bit) space, organized in a ring. The nodeIDs are chosen
so that the space is evenly populated. Each snapshot page
also has an identifier, its archiveID. To map the snapshot
page to a storage node, we use the successor function as
in Chord [28]; the node with the nodeID that succeeds the
snapshot page’s archiveID will be responsible for archiving
that page. However, note that any deterministic function
will work, e.g., we could have chosen the closest node in
the ID space, as in Pastry [25].

The archiveID of a snapshot page is the SHA1 hash
of the page’s ORnum and PageID. This way, all snapshot
pages of the same page will be mapped to the same stor-
age node. This choice makes the implementation of get
and getTS efficient because they can be implemented at a
single node.

To interact with the archive, the client proxy at the ORs
needs to map the NodeID of the node responsible for the
page of interest to its IP address. Systems based on consis-
tent hashing typically use a multi-step routing algorithm [25,
28] to do this mapping although recent work shows that
routing can be done in one step [7]. However, routing is
not an important concern for us because the client proxy at
an OR can cache the IP addresses of the nodes responsible
for its OR’s snapshot pages. Since the population of stor-
age nodes is unlikely to change very frequently, the cache
hit rate will be high. Therefore, the cost of using distributed
storage will just be the cost of sending and receiving the
data from its storage node.

We chose to use consistent hashing for a number of rea-
sons. If the node IDs and snapshot IDs are distributed rea-
sonably, it provides good load balancing. It also has the
property of allowing nodes to join and leave the system
with only local disruption: data needs to be redistributed
when this happens but only nodes nearby in ID space are
affected.

Of course, snapshot pages need to be replicated to al-
low storage nodes to leave the system without losing any
data. Thus a snapshot page will need to be archived at sev-

eral nodes. This does not slow down the system but does
generate more network traffic. One benefit of replication is
that snapshot pages can be retrieved in parallel from all the
replicas and the first copy arriving at the OR can be used to
satisfy the request. As a result, the cost of retrieving a snap-
shot page is the cost of fetching it from the nearest replica.

6 TRANSACTIONS ON SNAPSHOTS

Users can run transactions on a snapshot by specifying
a time in the “past” at which the transaction should execute.
We only allow read-only transactions, since we don’t want
transactions that run in the past to be able to rewrite history.

The most recent snapshot, S, with timestamp less than
or equal to the specified timestamp will be the snapshot
used for the transaction. The FE uses the timestamp of S
to fetch snapshot pages. Since the FE needs to determine
S, the timestamp specified by the user must be less than the
Tgmax at the FE.

In this section, we first provide an overview of the FE.
Then we describe how the FE and OR together support
read-only transactions on snapshots.

6.1 Thor Front-End

This section contains a brief overview of the FE. More
information can be found in [2, 13, 14].

To speed up client transactions, the FE maintains copies
of persistent objects fetched from the OR in its in-memory
cache. It uses a page map to locate pages in the cache, us-
ing the page’s PageID and the ORnum. When a transaction
uses an object that isn’t already in the cache, the FE fetches
that object’s page from its OR. When a transaction commits,
only modified objects are shipped back to the OR.

Pages fetched from the OR are stored in page-size page
frames. However when a page is evicted from the cache
(to make room for an incoming page), its hot objects are
retained by moving them into another compacted frame that
stores such objects.

Objects at ORs refer to one another using OREFs (recall
that an OREF identifies an object within its OR). To avoid
the FE having to translate an OREF to a memory location
each time it follows a pointer, we do pointer swizzling: the
first time an OREF is used, it is replaced by information that
allows the object to be efficiently located in the FE cache.
When an OREF is swizzled, it is changed to point to an
entry in the Resident Object Table (ROT). This entry then
points to the object if it is in the cache. This way finding an
object in the cache is cheap, yet it is also cheap to discard
pages from the cache and to move objects into compacted
pages.

6.2 Using Snapshots

When a user requests to run a transaction in the past, the
FE cache is likely to contain pages belonging to other time



lines, e.g., to the present. Similarly, when the user switches
back from running in the past to running in the present, the
FE cache will contain snapshot pages. In either case, the
FE must ensure that the user transaction uses the appropri-
ate objects: objects from current pages when running in the
present; objects from snapshot pages for the requested snap-
shot when running in the past.

One approach to ensuring that the right objects are used
is to clear the FE’s cache each time the user switches to
running at a different time. However, this approach forces
the FE to discard hot objects from its cache and might de-
grade transaction performance. This could happen if the
user switches repeatedly, e.g., from the current database to
a snapshot and back to the current database again.

Therefore we chose a different approach. We extended
the FE’s cache management scheme so that the FE caches
pages of multiple snapshots at the same time. Yet the FE
manages its cache so that a transaction only sees objects
of the correct version. Our implementation is optimized
to have little impact on the running of transactions in the
present, since we expect this to be the common case.

When the user switches from one time line to another,
all entries in the ROT will refer to objects belonging to the
time line it was using previously. We must ensure that the
transaction that is about to run does not use these objects.
We accomplish this by setting every entry in the ROT to
null; this, in turn, causes ROT “misses” on subsequent ac-
cesses to objects.

When a ROT miss happens, the FE performs a lookup
on the page map to locate the page on the cache. To ensure
that we find the right page, one belonging to the time line
being used by the currently running transaction, we extend
the page map to store the timestamp for each page; current
pages have a null timestamp. The page map lookup can then
find the right page by using the timestamp associated with
the currently running transaction. The lookup will succeed
if appropriate page is in the cache. Otherwise, the lookup
fails and the FE must fetch the page.

6.3 Fetching Snapshot Pages

The FE fetches a snapshot page by requesting it from
the OR that stores that page. The reason for using the OR
is that snapshots consist of both current pages and pages in
the archive; the OR can provide the current page if that is
appropriate, and otherwise it fetches the required page from
the archive.

Page fetch requests from the FEs to the ORs are ex-
tended to contain a snapshot timestamp, or null if the FE
transaction is running in the present. If the timestamp is not
null, the OR uses it to determine the correct snapshot page
by consulting its snapshot page map.

The snapshot page map stores the most recent snapshot
timestamp for each page. If the timestamp of the request is
less than or equal to the timestamp stored in the map for the

requested page, the OR requests the snapshot page from the
archive and returns the result of the fetch to the FE. Other-
wise, the OR must create the snapshot page at that moment.
It does this by using the page copy on disk or in the page
buffer, plus the information in the MOB and Anti-MOB. It
returns the resulting page to the FE. In addition if the snap-
shot page is different from the current page, the OR stores
the page in the archive and updates its snapshot page map;
this avoids creating the snapshot page again.

7 EXPERIMENTS

In this section, we present a performance evaluation of
our snapshot service. We do this by comparing the perfor-
mance of the original Thor to that of Thor-SS, the version of
Thor that supports snapshots. Thor is a good basis for this
study because it performs well. Earlier studies showed that
it delivers comparable performance to a highly-optimized
persistent object system implemented in C++ even though
the C++ system did not support transactions [14]. Our ex-
periments show that Thor-SS is only slightly more costly to
run than Thor.

Thor-SS is a complete implementation of our design in
the absence of failures; it includes making the Anti-MOB
persistent but not the recovery mechanism. This implemen-
tation is sufficient to allow us to measure performance in
the common case of no failures.

Our experimental methodology is based on the single-
user OO7 benchmark [1]; this benchmark is intended to
capture the characteristics of various CAD applications. The
OO7 database contains a tree of assembly objects with leaves
pointing to three composite parts chosen randomly from
among 500 such objects. Each composite part contains a
graph of atomic parts linked by bidirectional connection
objects, reachable from a single root atomic part; each atomic
part has three connections. We employed the medium OO7
database configuration, where each composite part contains
200 atomic parts. The entire database consumes approxi-
mately 44 MB.

We used OO7 traversals T1 and T2B for our experi-
ments. T1 is read-only and measures the raw traversal speed
by performing a depth-first search of the composite part
graph, touching every atomic part. T2B is read-write; it
updates every atomic part per composite part.

We used a single FE and a single OR for our experi-
ments. The OR and FE ran on separate Dell Precision 410
workstations (Pentium III 600 Mhz, 512 MB RAM, Quan-
tum Atlas 10K 18WLS SCSI hard disk) with Linux kernel
2.4.7-10. Another identical machine is used for the network
storage node in the network archive store, as well as for run-
ning a simulator (developed using the SFS toolkit [19]) for
simulating a 60 node wide-area archive store. The machines
were connected by a 100 Mbps switched Ethernet.



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

T
im

e 
(s

ec
o

n
d

s)

T1 T2MT2B

Thor Commit

Thor-SS Traverse

Thor-SS Commit

Thor Traverse
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7.1 Foreground Costs

The first set of experiments compares the foreground
cost of running Thor with Thor-SS. Particularly, we looked
at the extra cost of committing transactions in Thor-SS when
no MOB cleaning is occurring. The experiments used a
32 MB MOB to ensure MOB cleaning does not happen.

Thor-SS has extra work to do when the committing trans-
action overwrites previously modified objects. When over-
writing occurs in Thor, the OR writes the modified objects
to the MOB and modifies the MOB table to point to the
new entry. This work also occurs in Thor-SS, but in addi-
tion Thor-SS must add the previous entry to the Anti-MOB.
In either case this work is in the foreground: the OR doesn’t
respond to the FE’s commit request until after work is done.

We measured the average execution times for T1 and
T2B. In each case, the traversal was executed 20 times and
each run was a separate transaction. The experiments were
done with a hot FE cache that contained all the objects used
in the traversal. This way we eliminated the cost of fetch-
ing pages from the OR, since otherwise the cost of fetching
pages would dominate the execution time. The number of
pages used in the traversals was identical in both Thor and
Thor-SS.

The results of these experiments are shown in Figure 5.
The figure shows that there is no significant difference be-
tween running the read-only traversal T1 in Thor and Thor-
SS: in this case no writing to either the MOB or Anti-MOB
occurs. In T2B, however, 98,600 objects were modified,
which causes 98,600 overwrites in the OR’s MOB and each
overwrite leads to an object being moved to the Anti-MOB,
leading to an 8% slowdown.

The CPU time for the OR to commit a T2B transac-
tion is 1.65 seconds in Thor and 1.89 seconds in Thor-SS.
The difference is the time taken by Thor-SS to do the extra
work of storing overwritten objects into the Anti-MOB; the
data show that it takes approximately 2.4 µsecs to update
the Anti-MOB for each overwritten object.

The workload generated by T2B is not a very realis-
tic representation of what we expect users to do: users are
unlikely to repeatedly modify the same objects or modify

almost all objects in the database. Therefore, we devel-
oped another workload that is more realistic. This work-
load, T2M, is a modified version of T2B: each T2M traver-
sal randomly updates 10% (or 9,860 objects per traversal)
of the objects that the original T2B modifies. In T2M there
is much less overwriting than in T2B: each traversal over-
writes an average of 3,852 objects. As shown in Figure 5,
there is little difference in performance between Thor and
Thor-SS for this traversal.

7.2 Impact of Snapshot Page Creation

In this section we look at the additional work that Thor-
SS has to do when the MOB is cleaned. Thor cleans the
MOB in the background using a low-priority process (the
flusher) running in small time slices. Therefore, unless the
OR is very heavily loaded, cleaning does not show up as a
user-observable slowdown. We would like the same effect
in Thor-SS, even when snapshot pages are being created.

Thor cleans several pages at once. To amortize disk seek
time, it works on segments, which are 32 KB contiguous
regions of disk, each containing four pages. Thor can read
or write a segment about as cheaply as reading or writing
a page, and if more than one page in the segment has been
modified, cleaning costs will be lower using this approach.

The results in this section were obtained by running
T2M (the modified T2B). In each experiment T2M ran 25
times, i.e., we committed 25 transactions. We ran experi-
ments both with and without cleaning. To avoid cleaning
we used an 8 MB MOB; to cause cleaning to occur we used
a 4 MB MOB. With the 4 MB MOB, cleaning begins when
the 12th traversal commits. During the remaining traver-
sals, 1,141 segments were cleaned and 3,097 pages were
modified; an average of 56 modified objects (consuming
2.6 KB) were installed in each segment. We continued to
use a 32 MB cache at the OR so that no disk activity oc-
curred during the cleaning part of the experiment.

To get a sense of the OR load due to cleaning, we mea-
sured the OR CPU time required to do cleaning. The results
of these experiments are shown in Table 2. In each case the
measurement started at the point where the flusher thread
decided that a segment needs to be updated. At that point
the segment is already in memory. The measurement for
Thor stops when all modifications have been installed in
the segment and their entries removed from the MOB, but
the segment has not yet been written to disk. The results
show the average cost of cleaning a segment.

The table shows two measurements for Thor-SS. The
first is for the case where no snapshots need to be made;
however, Thor-SS still has extra work to do, since entries
need to be removed from the Anti-MOB. The second mea-
surement is for Thor-SS when snapshot pages are being
made. In this case the measurement includes the cost of
creating snapshot pages, reverting the changes, and writing
the pre-images to the snapshot log; the measurement stops



System Cleaning Time
Thor 6.74 ms
Thor-SS without snapshot 6.87 ms
Thor-SS with snapshot 11.09 ms

Table 2. Time Taken to Clean a Segment
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Figure 6. Cost of Taking Snapshots

before the snapshot log is forced to disk (since the flusher
does not wait for this to complete). This is a worst case
experiment in which every page requires a corresponding
snapshot page, e.g., it represents a case where a snapshot
has just been requested.

The impact on users of the additional cleaning activity
in Thor-SS depends on the load at the OR. What we can
hope is that when the OR has some spare cycles, we can
run Thor-SS with cleaning and snapshot pages entirely in
the background, just like Thor cleaning can be done in the
background in this case. This is a reasonable expectation
since, as we showed in Table 2, Thor-SS requires a modest
amount of time to do cleaning even in the case where every
page requires a snapshot page.

Figure 6 shows the results of these experiments. For
both Thor and Thor-SS, the experiments compare the cost
of running traversals with and without cleaning. The per-
formance of the traversals is identical from the viewpoint
of the user transaction: cleaning the MOB does not cause
any slowdown. In particular, even in the case where every
page that is cleaned requires a snapshot page, there is no
slowdown.

7.3 Running Transactions on Snapshots

In this section, we examine the performance of running
transactions in the past. We also compare this performance
with that of running transactions in the present. These ex-
periments use traversal T1, since we only allow read-only
transactions to run in the past.

We ran T1 using a cold FE cache so that every page used
by T1 must be fetched. Running T1 causes 5,746 snapshot
pages to be fetched. We also used an empty page cache at
the OR. Using a cold FE cache and an empty OR page cache
provide us with a uniform setup to measure the slowdown
that is caused by running T1 on a snapshot as compared to
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running it on the current database. As discussed in Sec-
tion 5, whenever there is a miss in the FE cache, the FE
fetches the missing page from its OR. This is true whether
the FE requires a snapshot page or a current page.

Figure 7 shows the results. The figure shows that run-
ning in the past is only slightly slower (approximately 5%
slower) than running in the present when snapshots are stored
on the OR’s disk. This slowdown is due entirely to process-
ing at the FE: in particular, it is due to an additional level of
indirection in the FE’s page map that affects transactions in
the past but not in the present.

The figure also shows what happens when the archive
store is not located at the OR. The slowdown is relatively
small if the snapshot pages are archived at a nearby node
that is connected to the OR by a 100 Mbps network, so that
the cost to send 8 KB of data from the storage node to the
OR is 1 ms: in this case the time taken to run T1 is 16.2 secs.
Performance is more degraded when the the time required
to send 8 KB of data increases to 10 ms, such as on a heav-
ily loaded or slower (e.g., 10 Mbps) LAN; hence the perfor-
mance of T1 is slower by an order of magnitude (68.7 secs).
Performance is further degraded when the archive is even
farther away.

These results imply that if the remote storage node were
very close to the OR, e.g., connected to it by a gigabit net-
work, performance of running on a snapshot would be es-
sentially identical when storing the archive at the OR or at
the remote node. Performance of running on snapshots de-
grades substantially as the storage moves farther away, but
use of remote shared storage may still be the best choice
because of the advantage of using such a shared facility.

8 RELATED WORK

A number of systems have provided snapshots, either
for use in recovering from failure, or to provide the ability
to look at past state. There is also a large body of work
on systems that take checkpoints [4, 16]. Here we compare
TimeLine to systems that provide snapshots, since they are
most closely related.



The Plan 9 [24] file system is a one-server system that
provides an atomic dump operation for backups. During
a dump operation, the in-memory cache is flushed, the file
system is frozen, and all blocks modified since the last dump
operation are queued on disk for writing to the WORM stor-
age. This system delays access to the file system while the
dump is being taken.

The Write Anywhere File Layout (WAFL) [8] is a file
system designed for an NFS server appliance that provides
a snapshot feature. The first time a page is modified after
the snapshot is taken, WAFL writes the page to a new lo-
cation (thus preserving the old disk copy for the snapshot);
it also modifies the disk copy of the directory block that
points to this page. The only block that needs to be dupli-
cated eagerly during the snapshot is the root inode block.
A snapshot includes the current values of all dirty pages in
the cache; if such a page is modified before being written
to disk, the proper snapshot value for the page would not be
known. To avoid this problem WAFL blocks incoming re-
quests that would modify dirty data that was present in the
cache at the moment the snapshot was requested. However,
it does not block any other requests.

Frangipani [31] is a distributed file system built on the
Petal [12] distributed storage system. Frangipani uses Petal’s
snapshot features to create a point-in-time copy of the entire
distributed file system. This point-in-time copy can then be
copied to a tape or WORM device for backup. To maintain
consistency of the snapshot, the backup process requests
an exclusive lock on the system. This requires stopping
the system so that all servers can learn about the snapshot.
When it hears about a snapshot, a server flushes its cache to
disk and blocks all new file system operations that modify
the data. These operations remain blocked until the lock is
released. After that point, the backup service takes a Petal
snapshot at each server to create the point-in-time copy.
This is done copy-on-write without delaying user requests.
(Petal doesn’t block to take a snapshot but it supports only
a single writer.)

Unlike Plan 9, WAFL, and Frangipani, we do not re-
quire the system to block users during the snapshot. Fur-
thermore, TimeLine is a distributed system, unlike Plan 9
and WAFL. Frangipani is also distributed but requires a
global lock to take a snapshot, which can lead to a sub-
stantial delay.

The Elephant file system [26] maintains all versions and
uses timestamps to provide a consistent snapshot. A version
of a file is defined by the updates between an open and close
operation on the file. The file’s inode is duplicated when
the file is opened and copy-on-write is used to create a pre-
modification version of the file. Concurrent sharing of a
file is supported by copying the inode on the first open and
appending to the inode-log on the last close.

TimeLine is similar to Elephant in its use of timestamps
but it is a distributed system while Elephant is a one-server

system. In addition TimeLine makes snapshots on com-
mand while Elephant takes them automatically. Taking snap-
shots on command reduces the size of archive storage. It
also arguably provides more useful information, since users
can decide what snapshots they want, rather than having to
contend with huge amounts of data that is hard to relate to
activities that interest them.

Some database systems [22, 27] also provide access to
historical information. These systems allow queries based
on time information that is either provided explicitly by the
user or implicitly by the system. When the time field is
overwritten, the old value of the record is retained.

An alternative design for snapshots is to store either an
undo or redo log and then materialize the snapshot on de-
mand: with an undo log, the current state would be rolled
backward to the desired time line, while with a redo log
the initial state would roll forward. Use of such logs was
pioneered in database system and some early work on the
Postgres Storage Manager [29] even proposed keeping the
entire state as a redo log. This approach was subsequently
rejected because of the cost of materializing the current sys-
tem state [30]. These results can also be taken to show that
materializing snapshot state is not practical: snapshots must
be available for use without a huge delay

9 CONCLUSION

This paper describes TimeLine, an efficient archive ser-
vice for a distributed storage system. TimeLine allows users
to take snapshots on demand. The archive is stored on-
line so that it is easily accessible to users. It enables “time
travel” in which a user runs a computation on an earlier sys-
tem state.

TimeLine allows snapshots to be taken without disrup-
tion: user access to the store is not delayed when a snapshot
is requested. Yet our scheme provides consistent snapshots;
in fact it provides atomicity, which is stronger than consis-
tency. The techniques used in TimeLine will also work in
a system that only provides atomicity for individual mod-
ifications. Furthermore timestamps can be used to order
snapshots in any system that implements logical clocks, and
logical clocks are easy and cheap to implement.

TimeLine provides consistent snapshots with minimum
impact on system performance: storing snapshot pages oc-
curs in the background. Our scheme is also scalable: snap-
shots are requested by communicating with a single node
and information is propagated to the nodes in the system
via gossip.

The main performance goal of our system is that snap-
shots should not interfere with transactions on the current
database and degrade their performance. An additional goal
is to provide reasonable accesses to snapshots, i.e., to com-
putations that run in the past. Our experiments show that
computations in the past run as fast as in the present when



the archive state is co-located with the current system state,
and run reasonably well using shared archive storage that
is close, e.g., on the same LAN, or connected by a high
speed link. The results also show that taking snapshots has
negligible impact on the cost of concurrently running com-
putations, regardless of where the archived data is stored.
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