
Software Upgrades for
Distributed Systems

Sameer Ajmani

Google

Barbara Liskov

MIT

Liuba Shrira

Brandeis

Internet Services

ν Are long-lived, robust
ν Run on many machines
ν Must be continuously available
ν Have persistent state
ν Face ever-changing requirements

ν Require software upgrades to
ν Fix bugs
ν Improve performance
ν Add/change/remove features

Upgrade Requirements

ν Automatic, Controlled Deployment
ν Ensure continuous availability
ν Test new software on a few nodes
ν Upgrade servers before clients

ν Mixed mode operation

v3

(upgrading)

v2v1

v2 v2

Outline

ν System & Upgrade Model

ν Specifying Upgrades

ν Implementation Models

System Model

ν A node is an object of class C

ν Different nodes may run different
classes

ν Nodes communicate via RPCs

Upgrade Model

ν A class upgrade replaces an old class,
Cold, with a new one, Cnew

ν Implements types Told, Tnew

ν May be compatible or incompatible

ν An upgrade is a set of class upgrades

Supporting Mixed Mode

ν Each node handles calls to past and
future versions of itself

ν Adding support for new versions must
be fast

ν Removing support for old versions
should be easy

Simulation Objects

ν Each node handles calls to past and
future versions of itself

F4 C3 P2F5

ν Future SOs simulate future behavior
ν Past SOs simulate past behavior
ν Adding/removing an SO does not require a

restart

Simulation Objects

ν Each node handles calls to past and
future versions of itself

F4 C3 P2F5

ν SOs are only required for certain upgrades

Specifying Upgrades

Specifying Upgrades

ν Must behave like a single object
ν Even when upgrades are incompatible

ν Upgrade specification must define this
ν Goal: no surprises for clients!

ν E.g., changing permissions to ACLs

F4 C3 P2F5

Constraints on Specifications

ν Type requirement
ν A call of version V behaves according to

the specification of type TV

v3 v2v1
v3

v1

v3

v2

Constraints on Specifications

ν Sequence requirement
ν Each event must reflect all earlier ones

despite:
ν Client upgrades

ν Server upgrades

ν Version introduced

ν Version retired

Example

ν ColorSet ◊ FlavorSet
ν Incompatible upgrade

ν ColorSet methods: insertColor(x, c),
getColor(x), …
ν E.g., { (1, red), (2, blue), (3, red) }

ν FlavorSet methods: insertFlavor(x,f),
getFlavor(x), …

Specifications: Invariant

Invariant I relates the object states
I(Oold, Onew)

Oold OnewI

I: {x|<x,c> in OCS} = {x|<x,f> in OFS}

Specifications: Mapping
Function

Mapping function MF defines initial state
Onew = MF(Oold) s.t. I(Oold, Onew)

Oold OnewMF

OFS = MF(OCS) = {<x,grape>| <x,c> in OCS}

Relating Behavior

Oold

O’new

m O’old

Onew

I I

?

Only for mutators

Relating Behavior

Oold

O’new

m O’old

Onew

I I

$m

Shadow methods relate behavior
Told.m ◊ Tnew.$m
Tnew.p ◊Told.$p

Shadow Method Specification

void ColorSet.$insertFlavor(x, f)
Effects: no <x,c> in thispre ⇒
 thispost = thispre U {<x,blue>}

ν Also ColorSet.$delete,
FlavorSet.$insertColor,
FlavorSet.$delete

The Compound Type

ν I, MF, and the shadow methods define a
compound type Told&new

ν All the methods, with extended specs for mutators

ν We would like:
ν Told&new is a subtype of Told, Tnew

ν When this doesn’t work:
ν Weaken invariant I

ν Upgrade scheduling

ν Disallow methods

Implementation Models

Direct Model

ν SO handles calls only to its own version
ν And delegates down the chain

F3 P1F4

v3 calls

v2 calls v2 callsv3 calls
C2

Problems with Direct Model

ν Poor expressive power
ν E.g., FlavorSet SO doesn’t know about

C.insertColor call

ν Synchronization

F3 P1F4

v3 calls

v2 calls v2 callsv3 calls
C2

Interceptor Model

ν Newest SO gets all calls
ν And delegates down the chain

F2F3F4

all calls

v1 callsv2,1
calls

v3,2,1
 calls C1

Interceptor Model

ν After first (incompatible) upgrade is
installed

P2F3F4

all calls

v3,2,1
 calls

v2,1
calls

v2 calls
C2

Interceptor Model

ν After second (possibly compatible)
upgrade is installed

F4 P3

all calls

v3,2,1
 calls

v3 calls
C3

Interceptor Model Evaluation

ν Excellent expressive power

ν Future and past SO must do more
ν Can reuse code and delegate

F4 P3

all calls

v3,2,1
 calls

v3 calls
C3

Prototype Implementation:
Upstart

ν C++ and Sun RPC

ν Intercepts socket(), read(), write()

ν Imposes minimal overhead

Summary

ν Upstart is the first complete approach
ν Allows mixed mode operation

ν The first definition of what must be
specified for incompatible upgrades

ν A powerful and useful implementation
model

ν A prototype implementation

Software Upgrades for
Distributed Systems

Sameer Ajmani

Google
Barbara Liskov

MIT

Liuba Shrira

Brandeis

Disallowing

ν Constraint: never disallow methods of
the current object

ν Future SO may disallow Tnew methods

ν Past SO may disallow Told methods

ν In either case, disallow
ν Mutators whose shadows are problem

ν Observers that expose problems

Some shadows cannot be
implemented via delegation

ν Disallow methods that have unimplementable
shadows

ν Add shadow method to delegate via dynamic
updating
ν Allowed iff T + shadow is a subtype of T

ν E.g., can’t add delete() to GrowSet

ν Implement shadow method in interceptor
ν Impacts transform function

ν Won’t work for past SOs because of retirement

What does Google do?

ν Extensible protocols
ν Assume defaults for missing fields

ν Ignore unexpected fields

ν Round-robin upgrades among replicas

ν Datacenter-by-datacenter

END OF SLIDES

ν The remaining slides are leftover from
previous talks and may contain stale
information

Code Execution

ν Call contains version number
ν Called node dispatches

F4 C3 P2F5

v5 calls

Upstart

ν A system that supports upgrades

ν And a methodology

ν Joint work with
ν Barbara Liskov

ν Liuba Shrira

Class Upgrade

ν New and old classes Cnew, Cold

ν Implement Tnew, Told

ν Scheduling function SF
ν Transform function TF
ν Simulation classes Snew, Sold

ν Might be incompatible
ν Tnew is not a subtype of Told

Class Upgrade

ν Replaces an old class, Cold with a new
one, Cnew

ν Every node running old class will switch
to new class eventually

ν Upgrade is a set of class upgrades

Defining an Upgrade

UDB

 nodes . . .

• Upgrader enters new upgrade at UDB
• Defines a new version

Propagating an Upgrade

UDB

 nodes . . .

• Nodes query the UDB periodically
• Version numbers flow on all messages

Executing an Upgrade

ν If upgrade affects the node
ν Runs the SF

ν And simulates the future

ν Shuts down, restarts, runs TF

ν Starts up “normally”
ν And simulates the past

Disallowing Example

ν GrowSet ◊ IntSet

ν For the future SO:
ν Disallow IntSet.delete

ν For the past SO:
ν Disallow GrowSet.isIn

ν Told&new becomes <Tfuture , Tpast>

What Disallowing Provides

ν Tfuture is a subtype of Told

ν And it implements Tnew

ν Tpast is a subtype of Tnew

ν And it implements Told

Transform Functions

ν Implement the identity map

ν May need to use future SO, create past
SO

ν Must be restartable

ν Cannot make remote calls

Scheduling Functions

ν Can consult the UDB

ν Examples:
ν Rolling upgrade

ν Big flip

ν Fast reboot

Implementing Upgrades

ν Need to provide SOs, TF, SF

ν For the SOs, need an implementation
model

Summary of Specifications

ν Specification defines the compound
type Told&new

ν I, MF, and the shadows

ν If the compound type isn’t a subtype,
disallow

Specifications: Shadow
Methods

ν Shadow methods relate behavior
Told.m ◊ Tnew.$m

Tnew.p ◊Told.$p

Oold Onew

$mm

e.g., FlavorSet.$insertColor

Talk Outline

ν Upgrade requirements

ν Upstart overview

ν Specifying upgrades

ν Implementing upgrades

Requirement: Generality

ν Support for arbitrary changes

ν Incompatible upgrades
ν Old features are no longer supported

Requirement: Continuous
Availability

ν Service is required 24/7

ν Even when upgrading

ν Therefore systems upgrade gradually

ν Implies mixed-mode operation

Requirement: Controlled
Deployment

ν Systems upgrade gradually
ν But with control

ν Manual control is impractical
ν An automatic system

ν But upgrader needs control

Requirement: Persistence

ν Systems store important state for users
ν It cannot be lost

ν But may need to be transformed

Requirement: Ease of Use

ν Avoiding feature creep helps

ν Upgrader needs to understand only a
few recent versions

