
A Review of Software Upgrade Techniques for Distributed Systems

Sameer Ajmani

ajmani@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street G908, Cambridge, MA 02139, USA

First Draft: August 7, 2002
Last Modified: November 7, 2004

Abstract

This document reviews work on software upgrades in distributed systems. The main text
describes the work in various sub-areas, and the bibliography provides annotations on these and
several other related papers.

1 Reconfigurable Distributed Systems

The earliest work on upgrades in distributed systems appears to be Bloom’s work on reconfiguration
in Argus [25,26]. Argus is a strongly-typed distributed system in which modules called “guardians”
implement interfaces composed of sets of “handlers” (i.e., RPCs). Argus guarantees that stable
state survives crashes and that actions are atomic. Bloom’s work addresses the problem of replacing
implementations in this environment. The unit of replacement may be a single guardian (which
resides at a single physical node) or a set of multiple guardians, called a subsystem (which may span
nodes). Bloom defines a formal model to determine which replacements are legal; these are those
replacements that preserve or invisibly extend the replaced subsystem’s continuation abstraction.
Bloom presents several examples of replacements that seem intuitively legal but that actually violate
this condition. The actual mechanisms used to replace subsystems allow a user to manually locate,
add, remove, and restart guardians; get, put, and optionally translate guardian state; and fetch and
rebind handlers. A sequence of these actions compose a replacement transaction; this transaction
either may wait until it can acquire exclusive lock on all required guardians or may preempt and
abort other clients’ transactions. Bloom does not detail an implementation and cites the need for
a higher-level user interface to replacement.

Kramer and Magee [62–64] describe how to upgrade a distributed system that is specified in
Conic, i.e., as a set of modules and connections between them. Upgrades are specified as declara-
tive change commands (link, unlink, create, and delete); a Configuration Manager (CM) translates
these commands into a “change transaction” and executes it (but does not guarantee atomicity).
The authors’ earlier work [62] makes no assumptions about applications and so cannot guarantee
application consistency after reconfiguration. Their later work [63] assumes applications can be-
come “passive” and describes how to preserve consistency across reconfiguration by passivating the
appropriate modules. The authors mention that recovery could be used instead of quiescence, but

1



they argue that this complicates applications. The system requires that the initiator of a transac-
tion be informed of when a transaction completes (i.e., no one-way messages). The system does
not support state transfer between old and new components, but the authors mention that this is
possible between quiescent components.

Frieder and Segal [40,41,81,82] describe how to upgrade a procedure-oriented system (including
RPC-based distributed systems) by replacing individual procedure definitions. A procedure P may
be replaced only if P is inactive, i.e., (1) P is not on the runtime stack, (2) P’s new version does not
call any active procedure, and (3) no procedure semantically-dependent on P is active. Properties
(1) and (2) are inferred from program syntax; property (3) must be supplied by the programmer.
If P contains static state, the upgrader must provide a “mapper procedure” to convert the old
version’s state to the new version. If the upgrade changes P’s interface, the upgrader must provide
an “interprocedure” to convert old calls to new ones. The authors argue that this scheme works
well for programs written in a top-down manner, since lower-level procedures become inactive often
and are exactly those most likely to change (since they implement low-level program details). Thus,
this scheme has difficulty upgrading long-running procedures and cannot upgrade procedures that
run forever.

Hofmeister and Purtilo [52–54] extend the work of Kramer and Magee by implementing recon-
figuration in Polylith, a module interconnection language. This work adds support for capturing
and restoring process state via an intermediate abstract representation [49]. Reconfiguring mod-
ules must be quiescent; messages received during the reconfiguration are buffered and are used to
initialize the replacement module. The authors also describe a packager, Surgeon, that determines
how components should be integrated, generates interface software to connect components, and
creates configuration commands to build the application. A “catalyst” module on each node actu-
ally runs reconfigurations using a package. Packaging may require component participation to save
the state, transform state, restart the component, or delay upgrades until a suitable point (so that
consistency can be maintained).

Barbacci et al. [19] describe reconfiguration in Durra, a module interconnection language. Durra
reconfiguration is “triggered” by certain events, such as component failures. When such an event
is detected by the local “cluster manager”, the manager executes the appropriate reconfiguration.

Sha et al. [85] describe the Simplex architecture for supporting evolution of real-time systems
that use commercial off-the-shelf (COTS) components. Upgrades are supported by grouping a set
of analytically redundant components (i.e., that satisfy the same abstract spec) into a subsystem
module. Each module contains a safety component, a baseline component, and an optional new
component. A module manager monitors the behavior of the new component and, if it behaves
correctly, replaces the baseline component with the new one.

Bidan et al. [24] describe a “Dynamic Reconfiguration Manager” for Aster, a CORBA-based
distributed system. Rather than passivating objects as in previous work, the DRM passivates
the links between objects. The authors define formal consistency and efficiency constraints for
reconfiguration, and argue that their reconfiguration algorithm is optimally efficient (i.e., causes
minimal disruption). Objects must implement a “Reconfigurable” interface to support dynamic
reconfiguration.

Ritzau and Andersson’s JDrums system [80] uses lazy upgrades to convert Java classes and
objects to new versions. An upgrade consists of a class converter that converts static class data
and an object converter that converts instances. The system uses a modified JVM to keep old
versions of classes and objects around so that old references continue to work. The authors do

2



not comment on the problem of state divergence between different versions of the same object.
They use Jini to deploy upgrades in distributed systems but have no mechanism to synchronize or
otherwise schedule distributed upgrades.

Almeida et al. [15, 16] describe dynamic reconfiguration in CORBA. The main differences be-
tween their work and that of Bidan et al. are (1) support for re-entrant invocations, (2) support
for atomic replacement of multiple objects, and (3) greater transparency using ORB extensions.

Tewksbury et al. [90] describe upgrades of CORBA applications in the Eternal system. They use
replication of server objects to provide uninterrupted service during upgrades. Objects are replaced
one-by-one with an intermediate version that implements both the old and the new behavior.
Rather than allowing the system to exist in a hybrid state (i.e., where different objects are at
different versions), the upgrade executes an “atomic switchover” that changes all objects from one
version to another. Reliable, totally-ordered multicast ensures atomicity. If the upgrade changes
an objects’ interface, all clients that use that interface must are also be upgraded atomically.
Furthermore, all affected objects must be quiescent when the switchover occurs (it’s not clear
how they manage “uninterrupted service” here!). The system uses wrapper functions to loosen
this quiescence requirement (i.e., by translating old calls to new ones). The system provides an
“upgrade preparer” tool that automatically generates wrapper functions and state transformers
given the old and new versions of an object’s code.

Solarski and Meling [88] propose upgrading a replicated service by upgrading each replica in
turn, thus maintaining online service. They assume that (1) multiple upgrades do not interleave,
(2) version v+1 offers a compatible interface to version v, (3) there exists a mapping from version
v’s state to version v+1, and (4) clients only use extensions offered by v+1’s interface after all
replicas are upgraded. Upgrades are scheduled by totally ordering the replicas (using some replica
identifier). They assume full compatibility between different versions, so they don’t need to convert
messages between versions (i.e., no simulation mode). As this is just a position paper, it does not
provide any design or implementation details.

2 Extensible Distributed Systems

Oki et al. [72] describe the “Information Bus”, a publish-subscribe architecture to support exten-
sible distributed systems. Components communicate by subscribing to data published on the bus;
data is identified using application-specific hierarchical names. Thus, new services can replace old
ones simply by taking over data publication. Data objects are dynamically typed, so new ob-
ject implementations can be deployed as subtypes of existing types. The system supports legacy
applications and services using “adapters” to translate between the application domain and the
Information Bus object format.

Govindan et al. [44] describe active distributed services (ADS), which are systems composed of
cooperating agents located on nodes on a network. Agents are extensible by plugging in new event
handlers (e.g., message handlers). Handlers are pushed from agent to agent or are retrieved on
demand (e.g., when a new event is encountered). Each physical node has one “actuator” that sends
and receives handlers (cf. upgrade dissemination). Each ADS agent on a node has an “envoy” that
uses the actuator to fetch new handlers. Together, the actuator and the envoys compose an ADS
node’s runtime “substrate.”

3



3 Automatic Software Deployment

The Software Dock [46, 47] is an architecture for automatic software dissemination and updating.
Software producers run servers called “release docks” that maintain a registry of their software
releases and notify subscribers of new updates. Software consumers run “field docks” that maintain
a registry of locally-installed software. Users download and authorize installation agents that in
turn install the requested software and install update agents. A global event system routes update
notifications to update agents, that in turn download and install updates (automatically resolving
any dependencies). Local agents enforce access control to local resources, like the file system.

Weiler [94] argues that fully automatic upgrades are dangerous, since automatic upgrade mech-
anisms often introduce incompatibilities. Part of the problem is that each vendor develops and
deploys their own automatic upgrade system; so standards could help fix this. Another problem
is that it’s hard for users to determine the cause of a problem; a log of installations and updates
would help, and upgrade rollback may be necessary to fix such problems.

4 Security and Interoperability

Devanbu et al. [35] identify security issues for automatic software management. The system must
protect the integrity of the software being shipped from vendor to user, the user’s configuration,
and messages from user to vendor that describe configurations. The system must authenticate
software vendors and licensed software users. The system must protect the privacy of software
components (because of their intellectual property value) and of software configurations (because
they may reveal sensitive data). Finally, users must be able to delegate authorization, e.g., so that
users can delegate configuration control to vendors and so that vendors can delegate configuration
checking to a testing lab.

Senivongse [83, 84] describes how to use mappers to enable cross-version interoperation during
distributed upgrades. By allowing nodes of different versions to communicate, one can change
interfaces during an upgrade without interrupting service (unlike systems that atomically change
all clients and servers). The author addresses many issues regarding the use of mappers: their
applicability and limitations, automatic generation of mappers, mapper chains, backward mappers
(new-to-old), optimizations, and issues that occur due to object subtyping.

References

[1] APT HOWTO. http://www.debian.org/doc/manuals/apt-howto/.

[2] Battle.net multiplayer online game server. www.battle.net.

A game server system that requires clients to version sync with the server before allowing
them to set up games with other clients. This ensures that clients in the same game are
version-synced, but also enables Battle.net to upgrade without interrupt existing games.

[3] Cisco Resource Manager. http://www.cisco.com/warp/public/cc/pd/wr2k/rsmn/.

A commercial, web-based management system that supports software upgrades for “Cisco
switches, access servers, and routers.”

[4] EMC OnCourse. http://www.emc.com/products/software/oncourse.jsp.

4



A commercial “application that enables secure, reliable, automated distribution of files be-
tween systems across IP networks.”

[5] The Gnucleus open-source Gnutella client. http://www.gnucleus.com/Gnucleus/.

A peer-to-peer file sharing system that deploys upgrades eagerly: nodes version sync on eahc
communication, so if one node upgrades, it causes each node it talks to to upgrade (epidemic
dissemination).

[6] Maŕımba. http://www.marimba.com/.

A commercial system for “managing software on desktops, laptops, servers, and devices.”

[7] Red Hat up2date. http://www.redhat.com/docs/manuals/RHNetwork/ref-guide/up2date.html.

[8] Star wars galaxies multiplayer online game. http://starwarsgalaxies.station.sony.com/.

A multiplayer online game that requires clients to version sync with the server before logging
in. Presumably, the server kicks off all clients (requiring them to resync) when a new version
is deployed.

[9] Windows 2000 clustering: Performing a rolling upgrade. 2000.

Describes how to maintain service while upgrading a cluster of NT or Windows 2000 servers
with a new service pack. Servers are upgraded one-at-a-time, and resources and clients au-
tomatically fail over and fail back between nodes in the cluster, even when those nodes are
running different versions (i.e., the cluster is in mixed mode).

[10] Managing automatic updating and download technologies in Windows XP. http://www.microsoft.

com/WindowsXP/pro/techinfo/administration/manageau%toupdate/default.asp, 2002.

[11] Sameer Ajmani. Distributed system upgrade scenarios. October 2002.

[12] Sameer Ajmani. A review of software upgrade techniques for distributed systems. August 2002.

[13] Sameer Ajmani. Automatic Software Upgrades for Distributed Systems. PhD thesis, MIT, September
2004.

[14] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Scheduling and simulation: How to upgrade dis-
tributed systems. In HotOS-IX, May 2003.

[15] Joao Paulo Almeida. An approach to dynamic reconfiguration of distributed systems based on object-
middleware, May 2001.

See “Transparent Dynamic Reconfiguration” (Almeida et al.) for details. This paper provides
more comparisons with related work.

[16] Joao Paulo A. Almeida, Maarten Wegdam, Marten van Sinderen, and Lambert Nieuwenhuis. Trans-
parent dynamic reconfiguration for CORBA, 2001.

Uses ORB extensions to intercept requests and thus passivate objects for reconfiguration.
Request interceptors queue requests made during a reconfiguration. A “reconfiguration man-
ager” handles the creation and deletion of objects, state transfer (and translation), and object
passivation. A “location agent” provides indirection between clients and server objects; this
allows clients to locate objects that migrate during a reconfiguration. The main differences
between this and Bidan et al. are (1) support for re-entrant invocations, (2) support for
atomic replacement of multiple objects, and (3) greater transparency using ORB extensions.

[17] S. Amer-Yahia, P. Breche, and C. Souza. Object views and updates. In Proc. of Journes Bases de
Donnes Avances, 1996.

5



Describes how the O2 ODBS supports object-oriented views and data updates made to
those views. A view is a virtual schema and base (set of persistent roots), defined using a
view definition language (VDL). The view is expressed in terms of the root (underlying)
schema and base. The paper defines completeness and consistency constraints on the view,
and requires that updates made to the view respect those constraints. An update to a data
attribute in a view is translated to updates on root data as follows: if an attribute in the
root is the same (or renamed) in the view, then updates to the attribute view are made to
the root. If the attribute in the view is defined as a function of the root attribute, and if the
function is invertible, then an update is applied to the root by first applying the inverse of
that function (e.g., if the view is root x 2, then new-root is new-view / 2). If the function is
not invertible, then the user may define code that translates view updates to root updates.
A runtime check made after such updates ensures that the new root value still maps to the
new view value (if this check fails, the update aborts). Finally, if no translation is possible,
the update fails.

[18] Jonathan Appavoo, Kevin Hui, Craig A. N. Soules, Robert W. Wisniewski, Dilma M. Da Silva, Orran
Krieger, David J. Edelsohn Marc A. Auslander, Ben Gamsa, Gregory R. Ganger, Paul McKenney,
Michal Ostrowski, Bryan Rosenburg, Michael Stumm, and Jimi Xenidis. Enabling autonomic behavior
in systems software with hot-swapping. IBM Systems Journal, 42(1), 2003.

[19] M. Barbacci et al. Building fault-tolerant distributed applications with Durra. In Intl. Conf. on Con-
figurable Dist. Systems [57], pages 128–139. Also in [55], pages 83–94.

Durra describes an application as a set of components (application tasks and communication
channels), a set of alternative configurations showing how these components are connected
at runtime, and a set of conditional configuration transitions that take place at runtime. A
“cluster” is a physical grouping of components at a node; a “cluster manager” is responsible
for starting and terminating application processes and links, for passing messages between
components, for monitoring reconfiguration conditions, and for carrying out reconfigurations.
The Durra runtime requires that processes be quiescent before reconfiguring; Durra relies
on processes to declare themselves quiescent explicitly by making a call to their cluster
managers. If a process does not quiesce in a timely manner, the cluster manager times out.
While Durra tolerates component failures, it does not tolerate cluster failures.

[20] Donnie Barnes. RPM HOWTO. http://www.rpm.org/RPM-HOWTO/, November 1999.

[21] T. Bartoletti, L. A. Dobbs, and M. Kelley. Secure software distribution system. In Proc. 20th NIST-
NCSC National Information Systems Security Conf., pages 191–201, 1997.

Authenticating and upgrading system software plays a critical role in information security,
yet practical tools for assessing and installing software are lacking in today’s marketplace.
the Secure Software Distribution System (SSDS) will provide automated analysis, notifica-
tion, distribution, and installation of security patches and related software to network-based
computer systems in a vendor-independent fashion. SSDS will assist with the authentication
of software by comparing the system’s objects with the patch’s objects. SSDS will monitor
vendors’ patch sites to determine when new patches are released and will upgrade system
software on target systems automatically. This paper describes the design of SSDS. Motiva-
tions behind the project, the advantages of SSDS over existing tools as well as the current
status of the project are also discussed.

[22] Luc Bellissard, Slim Ben Atallah, Fabienne Boyer, and Michel Riveill. Distributed application configu-
ration. In Intl. Conf. on Dist. Computing Systems, pages 579–585, 1996.

Olan is a module interconnection language (MIL) that extends the work of Conic, Polylith,
Darwin, and Durra. In particular, Olan adds support for encapsulating legacy applications

6



as components of the system. Uses “interactions” to define functional dependencies between
components and “connectors” to decouple implementations from interactions.

[23] Robert P. Bialek. The architecture of a dynamically updatable, component-based system. In Workshop
on Dependable On-line Upgrading of Dist. Systems [97].

Combines dynamic component architectures (e.g., CORBA, EJB, DCOM) with dynamic
software updating (e.g., Gupta and Jalote, Hicks) to create an architecture that supports both
structural reconfigurations and non-stop updates to component implementations. Defines an
“update descriptor” as a set of requests to add, remove, and/or update objects in the system,
along with the replacement implementations (much like a package).

[24] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfiguration service for CORBA. In
Intl. Conf. on Configurable Dist. Systems [60], pages 35–42.

Defines a Dynamic Reconfiguration Manager (DRM) that coordinates reconfigurations in
Aster, a CORBA-based distributed system. Builds on reconfiguration work in Polylith
(Hofmeister and Purtilo, 1993). Like that work, the DRM passivates links between objects
before reconfiguring them and transfers state to initialize new versions. The authors de-
fine formal consistency and efficiency constraints for reconfiguration, and argue that their
reconfiguration algorithm is optimally efficient (i.e., causes minimal disruption).

[25] Toby Bloom. Dynamic Module Replacement in a Distributed Programming System. PhD thesis, MIT,
1983. Also available as MIT LCS Tech. Report 303.

Bloom’s thesis describes reconfiguration in Argus, a strongly-typed distributed system com-
posed of modules called “guardians.” A guardian resides at a single node and is composed
of a set of processes and a set of state variables. State can either be volatile or stable; sta-
ble state is guaranteed to survive crashes. A guardian’s interface is a set of handlers (i.e.,
RPCs). Handlers are implemented using atomic actions (i.e., transactions) that guarantee
consistency, even across multiple guardians at different nodes. Bloom’s work addresses the
problem of replacing implementations in this environment. The smallest unit of replacement
is a single guardian. Subsystems, which are composed of multiple guardians, may also be
replaced atomically. To support this, Bloom defines the interface of a subsystem as a sub-
set of the handlers of the guardians in that subsystem. Bloom also defines a formal model
to determine which replacements are legal; these are those replacements that preserve or
invisibly extend the replaced subsystem’s continuation abstraction. Bloom presents several
examples of replacements that seem intuitively legal but that actually violate this condition.
For example, replacing a unique ID generator may violate future behavior by repeating an
ID. Extending an abstraction by adding a “delete” operation may break clients that depend
on data existing forever (i.e., that only check for existence once). Bloom also argues that
successive replacements can eventually restrict a continuation abstraction until no more re-
placements are possible. The actual mechanisms used to replace subsystems allow a user
to manually locate, add, remove, and restart guardians; get, put, and optionally translate
their state; and fetch and rebind handlers. A sequence of these actions compose a replace-
ment transaction; this transaction either may wait until it can acquire exclusive lock on all
required guardians or may preempt and abort other clients’ transactions. Bloom does not
detail an implementation and cites the need for a higher-level user interface to replacement.

[26] Toby Bloom and Mark Day. Reconfiguration in Argus. In Intl. Conf. on Configurable Dist. Systems [57],
pages 176–187. Also in [55], pages 102–108.

Defines a correctness condition for reconfiguration: “continuation abstractions are preserved
or invisibly extended by a replacement.” That is, module (guardian) replacements must
be backward (upward) compatible and must continue the behavior of the original module

7



(e.g., by transferring the old module’s state). Reconfiguration quiesces the modules to be
replaced; client transactions on those modules abort. The authors describe two kinds of
upgrading infrastructures: system-supported replacement (SSR) and application-level re-
placement (ALR). SSR requires hooks in the Argus system to allow replacement and an
additional indirection on handler calls. ALR requires participation by designers of modules
and clients of modules to support upgrades.

[27] Philippe Breche, Fabrizio Ferrandina, and Martin Kuklok. Simulation of schema change using views.
In Database and Expert Systems Applications, pages 247–258, 1995.

[28] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, July 2001.

Discusses tradeoffs in the design of giant-scale services that allow for graceful degredation
of service under load and failure and support for online evolution. Advocates automatic
upgrade systems, and describes three approaches: fast reboot (everyone at once), rolling
upgrade (round-robin), and big flip (partition the system, then upgrade each partition).
Insists that these systems need a safe and fast way to roll back to the old version, since new
versions tend to be buggy. Mentions that many systems use a staging area where the new
software is set up alongside the old software before going live — makes switchover (in either
direction) easy.

[29] A. Brown and D. A. Patterson. Rewind, Repair, Replay: Three R’s to dependability. In 10th ACM
SIGOPS European Workshop, Saint-Emilion, France, September 2002.

[30] M. R. V. Chaudron and F. van de Laar. An upgrade mechanism based on publish/subscribe interaction.
In Workshop on Dependable On-line Upgrading of Dist. Systems [97].

Advocates the use of publish/subscribe as an interaction style for upgradeable component-
based systems. Publish/subscribe induces less coupling than request-response (e.g., RPC),
since components do not have to interact synchronously and do not have to know each
other. Therefore, components can be replaced (more) easily; a configuration manager (CM)
manages these replacements. Authors do not consider upgrades that require state transfer
between components or upgrades to the CM.

[31] Injun Choi, Sungmoon Bae, Namchul Do, and Myungwhan Yun. Backward propagation of engineering
constraints in active object-oriented databases. In Proc. of 22nd International Conference on Computers
and Industrial Engineering, pages 20–23, Cairo, Egypt, December 1997.

Describes a use of triggers to maintain integrity constraints among a set of related objects.
This is mildly related to how simulation objects must propagate mutations to objects further
down the chain and deal with problems that occur when their constraints are violated.

[32] Jonathan E. Cook and Jeffery A. Dage. Highly reliable upgrading of components. In Intl. Conf. on
Software Engineering, Los Angeles, CA, 1999.

Maintains and runs multiple versions of a component simultaneously to avoid introducing
errors at upgrades. For example, suppose version 1 of a component has a method whose input
is any nonnegative number, and suppose version 2 accepts any number. Then, this system
uses version 2’s output for nonpositive numbers and uses version 1’s for positive numbers
(the idea being version 1 probably works fine for positive numbers, but version 2 might be
broken). The system monitors version 2’s output on positive numbers and records statistics
on whether it makes any errors. The upgrader can examine these statistics to determine
whether version 1 can be removed in favor of version 2. This work does not seem to address
the problem of state divergence between components (i.e., since version 2 sees some requests
that version 1 does not, version 2’s state may diverge from version 1’s).

8



[33] Jonathan E. Cook and Navin Vedagiri. Reliable upgrading through multi-version execution. In Work-
shop on Dependable On-line Upgrading of Dist. Systems [97].

Allows multiple versions of a function to exist simultaneously, and uses an arbiter to dispatch
calls dynamically to different versions of a function. Keeps the old version around to protect
the system from errors introduced by a new version, until the new version is deemed safe.

[34] Virginia C. de Paula, G. R. Ribeiro Justo, and P. R. F. Cunha. Specifying dynamic distributed software
architectures.

[35] P. Devanbu, M. Gertz, and S. Stubblebine. Security for automated, distributed configuration manage-
ment. In ICSE Workshop on Software Engineering over the Internet, April 1999.

Identifies security issues for automatic software management and a research plan to address
them. Integrity must be guaranteed for the software being shipped from vendor to user,
the user’s configuration, and messages from user to vendor that describe configurations.
Authentication is needed to identify software vendors and licenced software users. Privacy
protections are needed for software components (because of their intellectual property value)
and for software configurations (because they may reveal sensitive data). Finally, delegation
is needed, e.g., to let administrators delegate configuration control to vendors and to let
vendors delegate configuration checking to a testing lab.

[36] Chryssa Dislis. Improving service availability via low-outage upgrades. In Workshop on Dependable
On-line Upgrading of Dist. Systems [97].

Gives an industry perspective (Motorola, Inc.) on the importance of upgrading software
without interrupting service, and suggests (common sense) techniques for minimizing down-
time. For example, preparing the system for the upgrade, taking backups in case roll-back
is needed, minimizing user interaction (since this is typically slower than automated actions
and reduces error), etc. Note that the full paper is not available yet.

[37] Dominic Duggan. Type-based hot swapping of running modules. In Intl. Conf. on Functional Program-
ming, pages 62–73, 2001.

[38] Huw Evans and Peter Dickman. DRASTIC: A run-time architecture for evolving, distributed, persistent
systems. Lecture Notes in Computer Science, 1241:243–??, 1997.

Separates distributed systems into “zones” that upgrade using stop-the-world. Uses “change
absorbers” and “transformers” to convert objects as they move from zone to zone.

[39] R. S. Fabry. How to design systems in which modules can be changed on the fly. In Intl. Conf. on
Software Engineering, 1976.

[by Steven Richman] Fabry introduces many of the basic concepts of dynamic upgrades.
He proposes the use of pointer indirection to resolve code and data references to current
versions. Data structures are upgraded lazily and can have their representations transformed
arbitrarily during an upgrade. Because upgrades can introduce incompatibilities between
code and data of different versions, data structures are tagged with version numbers. These
numbers are checked before the execution of data access routines: if a data structure’s version
is not what a routine expects, then the out of date data or code is upgraded. Fabry makes
no mention of quiescence or valid times at which upgrades can be safely applied; instead,
he relies upon synchronization on data structure locks to control the progress and ordering
of an upgrade’s modifications. This scheme requires the restart of code segments that are
older than the data they are trying to access, and therefore seems to not work if a side effect
precedes a data structure access in a flow of execution.

9



[40] Ophir Frieder and Mark E. Segal. Dynamic program updating in a distributed computer system. In
IEEE Conf. on Software Maintenance, pages 198–203, Phoenix, AZ, October 1988.

[41] Ophir Frieder and Mark E. Segal. On dynamically updating a computer program: From concept to
prototype. Journal of Systems and Software, pages 111–128, February 1991.

Describes PODUS (see Segal and Frieder, 1993).

[42] Sanjay Ghemawat. Google, Inc., personal communication, 2002.

[43] Stephen Gilmore, Dilsun Kirli, and Chris Walton. Dynamic ML without dynamic types. Technical
Report ECS-LFCS-97-378, University of Edinburgh, December 1997.

[44] R. Govindan, C. Alaettino, and D. Estrin. A framework for active distributed services. Technical Report
98-669, ISI-USC, 1998.

An active distributed service (ADS) is composed of cooperating agents located on nodes on
a network. Agents are extensible by plugging in new event handlers (e.g., message handlers).
Handlers are pushed from agent to agent or are retrieved on demand. Each physical node
has one “actuator” that sends and receives handlers (cf. upgrade dissemination). Each ADS
agent on a node has an “envoy” that uses the actuator to get handlers. Together, the actuator
and the envoys compose the ADS’s runtime “substrate”.

[45] Deepak Gupta and Pankaj Jalote. On-line software version change using state transfer between pro-
cesses. Software Practice and Experience, 23(9):949–964, September 1993.

[by Steven Richman] Gupta and Jalote take a rather different approach to on-the-fly up-
grades. Instead of modifying a running process, they suspend the process and copy it to a
new, upgraded process. The copy process has a new code segment that reflects the update,
and data and stack segments that are duplicated from the old processes (with pointers mod-
ified as necessary). A runtime library contains special versions of the open and close system
calls that allow open file descriptors to be transfered to the new processes. The system only
considers an upgrade valid if none of the modified functions are being executed at the time
the update occurs. This is enforced by having the application run as a child process of an
upgrader process: the upgrader process uses the ptrace debugging system call to monitor the
application’s stack. This quiescence requirement precludes the update of long-lived functions
that are often or always on the stack, such as top level functions or event processing loops.
Gupta and Jalote posit that these sorts of functions generally can be made static, with the
“real work” delegated to shorter-lived functions. It is not obvious that this is true, and their
quiescence requirement may prove onerous in many applications. The programmer is allowed
to specify a single state transformer function that is executed when the rest of the upgrade
is complete.

[46] Richard S. Hall, Dennis Heimbeigner, Andre van der Hoek, and Alexander L. Wolf. An architecture for
post-development configuration management in a wide-area network. In Intl. Conf. on Dist. Computing
Systems, May 1997.

Uses servers called “release docks” at software producers and “field docks” at software con-
sumers to disseminate new software and updates. Users download and authorize installation
agents which in turn install the requested software and install update agents. A global event
system routes update notifications to update agents, which in turn download and install
updates. A hierarchical registry system standardizes descriptions of software packages, their
file structure, and their interdependencies. If an installation or update depends on another
package, that package is automatically installed or updated as needed. Local agents enforce
access control, e.g., by mapping registry changes onto the file system.

10



[47] Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A cooperative approach to support software
deployment using the Software Dock. In Intl. Conf. on Software Engineering, pages 174–183, 1999.

[48] Steffen Hauptmann and Josef Wasel. On-line maintenance with on-the-fly software replacement. In
Intl. Conf. on Configurable Dist. Systems [59], pages 70–80.

Supports replacement of modules, called “actors”, in the Chorus real-time OS. Actors can
contain several threads and provide an interface composed of several communication ports.
The replacement approach does not depend on specially-written apps; instead, app code is
modified to make the app replaceable. The authors claim that most of this modification can
be done automatically. Modifications include (1) adding a thread to run the replacement, (2)
adding state capture/restore functions at exchange points (places where threads can block),
(3) addings handlers for aborted system calls, (4) adding instructions to restore the call stack
after replacement.

[49] M. Herlihy and B. Liskov. A value transmission method for abstract data types. ACM Transactions on
Programming Languages and Systems, 4(4):527–551, 1982.

Used by several reconfiguration systems to transfer state from old versions of components to
new ones.

[50] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In SIGPLAN
Conf. on Programming Language Design and Implementation, pages 13–23, 2001.

[by Steven Richman] Hicks et al. implement a dynamic update system in a C-like imperative
language. Their system allows for data transformation during an upgrade. An upgrade con-
sists of dynamically-linked code and optional state transformer functions. An upgrade’s type
safety is guaranteed with a proof-carrying typed assembly language (it is unclear why the
type analysis cannot be carried out at compile time). New code is attached to old code by re-
linking references. A tool automatically generates simple state transformer functions based on
code changes, minimizing programmer work. The programmer is required to specify a single
quiescent point in the application at which upgrades can safely occur, and this point cannot
change across versions. An upgrade happens atomically at the specified time. The authors
apply their upgrade system to a single-threaded event-driven web server that is amenable
to quiescence identification, but it is not clear that update timing can be specified easily in
multithreaded or more complex applications. In general, update timing is an important and
difficult problem in systems that seek to upgrade running applications mid-execution.

[51] Gilsi Hjalmtysson and Robert Gray. Dynamic C++ classes—A lightweight mechanism to update code
in a running program. In USENIX Annual Technical Conf., pages 65–76, June 1998.

[by Steven Richman] Hjalmtysson and Gray’s dynamic C++ classes represent an upgrade
system similar in spirit to but simpler than Fabry’s scheme. They permit updates at class
granularity by providing a library with a generic template class that serves as a proxy for
indirect access to dynamic classes. Dynamic linking intromits new code. Dynamic C++
classes avoid the problem of upgrade completeness and quiescence by allowing objects with
old class versions to persist until they are destroyed; an upgrade applies only to new objects.
Objects of different versions can coexist because the system forces dynamic classes to inherit
from abstract interfaces that cannot change across versions. This constraint necessarily limits
program evolution. Further, the policy of keeping objects with out of date class versions until
deletion is ill-suited to applications with long-lived objects: an upgrade is not complete until
all objects from the old version have been destroyed, and this may never occur. This becomes
problematic if a critical bug fix must be applied to a long-lived object. Ultimately, the onus
is placed on the programmer to delete and reconstruct objects that would not otherwise be
updated. It is clear, then, that automatic transformation of live objects is a desirable property

11



in an upgrade system. Hjalmtysson and Gray’s method has several strengths, though; namely,
it is an efficient implementation of dynamic updates in a modern programming language and
uses only those features already present in the language and linking environment–no language
extensions or special runtime systems are required.

[52] C. Hofmeister, E. White, and J. Purtilo. Surgeon: A packager for dynamically reconfigurable distributed
applications. In Intl. Conf. on Configurable Dist. Systems [57], pages 164–175. Also in [55], pages 95–101.

Describes a way to package an upgrade to software components in a distributed system.
Packaging analyzes interface bindings, determines how components should be integrated,
generates interface software to connect components, and creates configuration commands to
build the application. A “catalyst” module on each node actually runs reconfigurations using
a package (cf. the UL). Packaging may require component participation to save the state,
transform state, restart the component, or delay upgrades until a suitable point (so that
consistency can be maintained). The authors categorize the kinds of components that can
be reconfigured without any such participation: these are those modules that neither require
state transfer, nor special initialization, nor synchronization with other modules.

[53] Christine R. Hofmeister. Dynamic Reconfiguration of Distributed Applications. PhD thesis, University
of Maryland, College Park, 1994. Also available as Technical Report CS-TR-3210.

Hofmeister’s thesis on her 1993 work with Purtilo.

[54] Christine R. Hofmeister and James M. Purtilo. A framework for dynamic reconfiguration of distributed
programs. Technical Report CS-TR-3119, University of Maryland, College Park, 1993.

Inspired by Kramer and Magee’s reconfiguration model in Conic, this work adapts that model
to the Polylith distributed environment (supports general message-passing, not just RPC).
Reconfigurations can change module implementations, application structure (e.g. add and
remove modules), and application geometry (e.g. physical location of modules). This work
extends the Conic work by adding support for capturing and restoring process state via an in-
termediate abstract representation [49]. Reconfiguring modules must be quiescent; messages
received during the reconfiguration are buffered and are used to initialize the replacement
module.

[55] IEE Software Engineering Journal, Special Issue on Configurable Dist. Systems. Number 2 in 8. IEE,
March 1993.

[56] INSERT: Incremental software evolution for real-time applications, 1997.

This entry is a placeholder until a suitable publication is found. From the web page: Our
objective is the development of a capability package that will permit safe on-line upgrading
of hardware and software in spite of residual errors in the new components. This package
will facilitate a paradigm shift from static design and extensive testing to safe upgrades of
real-time safety critical systems. The package will be implemented and demonstrated in the
Lockheed Martin flight simulation hotbench.

[57] Intl. Workshop on Configurable Dist. Systems, London, England, March 1992.

[58] 2nd Intl. Workshop on Configurable Dist. Systems, Pittsburgh, PA, March 1994.

[59] 3rd Intl. Conf. on Configurable Dist. Systems, Annapolis, MD, May 1996.

[60] 4th Intl. Conf. on Configurable Dist. Systems, Annapolis, MD, May 1998.

[61] R. H. Katz, M. Anwarrudin, and E. Chang. A version server for computer-aided design data. In Proc.
23rd Design Automation Conference, pages 27–33, 1986.

12



Describes a way to keep a history of object versions by allowing later versions to keep a
pointer to earlier ones. Need to read this to determine whether or not this is similar to SOs.
(I don’t think so)

[62] J. Kramer and J. Magee. Dynamic configuration for distributed systems. IEEE Transactions on Software
Engineering, 11(4):424–436, April 1985.

Describes how to upgrade a distributed system that is specified in Conic, i.e., as a set
of modules and connections between them. Messages between modules may be one-way
(asynchronous) or request-response (RPC-like). Upgrades are specified as declarative change
commands (link, unlink, create, delete, etc); a Configuration Manager (CM) translates these
into operating system commands and executes them. Declarative commands allow the CM to
select the best “change strategy,” e.g., to minimize downtime (cf. upgrade schedule). The CM
checks that any changes obey module interface type signatures. The upgrader must specify
change commands directly; the system does not attempt to infer change commands from
before and after versions of the configuration (e.g., Hicks, 2001 and Tewksbury, 2001). The
CM itself is specified in Conic, but is not upgradable. System does not quiesce modules, and
so cannot guarantee state consistency. System does not support state transfer or translation
between versions. System does not provide atomic upgrades, i.e., an upgrade may fail and
leave the system in an inconsistent state.

[63] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic change management. IEEE
Transactions on Software Engineering, 16(11):1293–1306, November 1990.

Argues for a separation of functional application concerns from structural configuration con-
cerns. Distributed applications are described as interconnected components. Configuration
changes are specified declaratively; a configuration management system translates this spec-
ification into a “change transaction” that can create, remove, link, or unlink components. To
preserve application consistency, components must be able to become “passive,” i.e., stop
initiating but continue serving transactions. Given this capability, the configuration manage-
ment system can passivate the appropriate components before actually changing the system
structure. A component can be removed if it is “quiescent”, i.e., it is passive and all compo-
nents linked to it are passive. The authors mention that an alternative to quiescence is to
use recovery to restore application consistency, but they argue that this complicates appli-
cations (but they also mention recovery may be necessary to deal with failure). The initial
presentation assumes transactions are independent (i.e. not nested), but later sections relax
this assumption (either by passivating dependent components or by aborting the dependent
transactions). The system requires that the initiator of a transaction be informed of when a
transaction completes (i.e., no one-way messages). The system can be extended to support
multiple, concurrent change transactions by passivating more components. The system does
not support state transfer between old and new components, but the authors mention that
this is possible between quiescent components. In future work, the authors mention that
an application could minimize system disruption by instigating change when quiescence is
detected, rather than externally imposed.

[64] J. Kramer, J. Magee, and A. Young. Towards unifying fault and change management. In IEEE Workshop
on Future Trends of Dist. Computing Systems in the ’90s, pages 57–63, Cairo, 1990.

[65] Barbara Staudt Lerner. A model for compound type changes encountered in schema evolution. ACM
Transactions on Database Systems, 25(1):83–127, 2000.

Excellent related work on schema evolution systems. Focus is on identifying (inferring) steps
in schema evolution from before and after definitions (i.e., does an intelligent diff to infer
refactorings). Also generates derivation functions to initialize new state from old values (i.e.,
state transform functions).

13



[66] Barbara Liskov. Software upgrades in distributed systems, October 2001. Keynote address at the 18th
ACM Symposium on Operating Systems Principles.

[67] Chang Liu and Debra J. Richardson. Using RAIC for dependable on-line upgrading of distributed
systems. In Workshop on Dependable On-line Upgrading of Dist. Systems [97].

A RAIC controller provides a static interface to an array of similar or identical components.
The RAIC automatically handles failover and recovery of components. Thus, RAIC can
support component updates by allowing new versions to be added to the component array. If
the new version of a component is faulty (e.g., raises an exception), RAIC intercepts the fault
and redirects the call to an older version of the component. Furthermore, different callers
can use different versions of the components. It is not clear whether this system avoids state
divergence between components of different versions.

[68] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz Barnes. Runtime support for
type-safe dynamic Java classes. In European Conf. on Object-Oriented Programming, 2000.

[by Steven Richman] Malabarba et al. bring dynamic classes to Java by modifying the virtual
machine and adding a dynamic class loader. Type correctness is checked when an upgrade
in compiled. Specifically, their compiler guarantees that the set of new and changed classes
comprising an update forms a complete upgrade if the changes are applied atomically. In their
implementation, upgrades occur in an atomic global update, but objects are transformed
lazily, as in our persistent object base. A quick initial marking phase tags all reachable
objects that need to be upgraded, and any subsequent references to marked objects trap to
an upgrader that suspends all threads and brings the objects up to date. No general state
transformation facility is provided; fields are simply copied from old objects to new objects
and new fields are initialized to default values.

[69] Stephen McCamant and Michael D. Ernst. Predicting problems caused by component upgrades. In 10th
European Software Engineering Conference and the 11th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 287–296, Helsinki, Finland, September 2003.

[70] B. Meyer, S. Zlatintsis, and C. Popien. Enabling interworking between heterogeneous distributed plat-
forms. In IFIP/IEEE Intl. Conf. on Dist. Platforms (ICDP), pages 329–341. Chapman & Hall, 1996.

Uses gateways between heterogeneous distributed platforms to provide “federation trans-
parency” (cf. “evolution transparency”). When using objects from a different domain, they
look like objects in the local domain.

[71] Simon Monk and Ian Sommerville. A model for versioning of classes in object-oriented databases. In
Proceedings of BNCOD 10, pages 42–58, Aberdeen, 1992. Springer Verlag.

Presents a model for class (schema) versioning in OODBs. Schema versioning is different
from schema modification: modification has a single logical schema that is updated, e.g.,
by changing a class definition. All instances of the class are eventually (eagerly or lazily)
updated. In versioning, every change to a class results in a new version. Each instance is
created using a given version. This version never changes, i.e., an instance never transforms
to a new version. The author’s model uses “update” and “backdate” methods to convert
method/field accesses up and down versions. This is more flexible than ENCORE [87, 99]
because it allows accesses to have different semantics in each version. This system also stores
old values that are removed in later versions.

[72] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus: An architecture for
extensible distributed systems. In 14th ACM Symposium on Operating System Principals, Asheville,
NC, 1993.

14



A communication medium that supports the transfer of objects using either publish-subscribe
or RMI. Objects are identified using hierarchical (DNS-like) names called “subjects.” Clients
get data by subscribing to subjects. Servers name published data using subjects. Clients
locate services (e.g., for RMI) by publishing interests. Thus, new servers can be introduced
without altering clients. Data is disseminated using ethernet broadcast on LANs and an over-
lay network in the wide area. Objects are dynamically typed, so new types can be introduced
(although clients can use the new types only if they know how to handle a supertype). The
system supports legacy applications and services using “adapters” to translate between the
app domain and the Information Bus object format.

[73] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software evolution. In Intl.
Conf. on Software Engineering, Kyoto, Japan, April 1998.

Supports runtime software evolution by adjusting “connectors” between components dynam-
ically. Connectors are themselves components that regulate communication and abstract the
underlying mechanisms. Uses imperative commands (add, link, start) to direct reconfigura-
tion.

[74] Vivek Pai et al. CoDeeN.

A CDN deployed on PlanetLab that upgrades its nodes about twice a week, causing only
about 20 seconds of downtime per node. New versions are simply scp’d to the nodes and the
software is restarted to use the new code. Versions are typically backwards-compatible; on the
rare occasions when a new version is incompatible, version numbers are used to distinguish
new calls from old ones (which are rejected).

[75] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint for introducing disruptive technology
into the Internet. In In Proceedings of the 1st Workshop on Hot Topics in Networks (HotNets-I), October
2002. PlanetLab.

[76] Felix Rauch, Christian Kurmann, and Thomas M. Stricker. Partition repositories for partition cloning—
OS independent software maintenance in large clusters of PCs. In Proceedings of the IEEE International
Conference on Cluster Computing 2000, Chemnitz, Germany, November 2000.

[rauch] In this paper we looked at the problem of minimizing the amount of data to archive
(or upgrade) multiple versions of installations in a multi-use cluster.

[77] Felix Rauch, Christian Kurmann, and Thomas M. Stricker. Optimizing the distribution of large data
sets in theory and practice. Concurrency and Computation: Practice and Experience, 14(3):165–181,
April 2002.

[rauch] The problem of installing multiple operating systems on our 128-node cluster moti-
vated us to do this study on the distribution of large data sets (basically hard-disk partitions).

[78] P. Reichl, D. Thißen, and C. Linnhoff-Popien. How to enhance service selection in distributed systems.
In Intl. Conf. Dist. Computer Communication Networks—Theory and Applications, pages 114–123,
Tel-Aviv, November 1996.

Extends service selection to choose best match via “service distance” (best-fit specification
matching)

[79] Joel Richardson and Peter Schwarz. Aspects: Extending objects to support multiple, independent roles.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, volume 20, pages 298–307, May
1991.

15



Describes how to integrate aspects (wrappers) into the type system, so that a single object
may evolve over time with new state and new behavior. Similar to SOs, since aspects need
not implement a subtype of the base object’s type and may contain their own state. But this
paper does not discuss what happens when the base object enters a state that doesn’t make
sense in the aspect.

[80] Tobias Ritzau and Jesper Andersson. Dynamic deployment of Java applications. In Java for Embedded
Systems Workshop, London, May 2000.

JDrums: Uses lazy upgrades to convert classes and objects to new versions. An upgrade
consists of a class converter that converts static class data and an object converter that
converts instances. The system uses a modified JVM to keeps old versions of classes and
objects around so that old references continue to work. Does not comment on the problem of
state divergence between different versions of the same object. Uses Jini to deploy upgrades in
distributed systems, but has no mechanism to synchronize or otherwise schedule distributed
upgrades. Converter routines cannot call methods of old or new objects – they can only copy
and convert object state.

[81] Mark E. Segal and Ophir Frieder. Dynamically updating distributed software: supporting change in
uncertain and mistrustful environments. In IEEE Conf. on Software Maintenance, pages 254–261,
October 1989.

[82] Mark E. Segal and Ophir Frieder. On-the-fly program modification: Systems for dynamic updating.
IEEE Software, 10(2), March 1993.

A good review of several updating systems. Categorizes software-based dynamic updating
systems as those that replace abstract data types (e.g., Fabry), replace servers in client-
server systems (e.g., Argus), update in constrained message-passing systems (e.g. Conic), and
update programs in procedural languages (e.g., PODUS). Also details PODUS: a procedure-
oriented dynamic updating system that can replace a procedure definition provided it is
inactive, i.e., not on the stack, not used by any proc on the stack, and not semantically
depended on by any proc on the stack. PODUS works in distributed environments that use
RPC. Semantic dependencies between procs are specified by a programmer; semantically
dependent procs must reside at the same physical site. PODUS uses “interprocedures” to
map calls from an old version of a proc to a new version and uses “mapper procedures”
to copy/convert static state from one proc to another. Thus, PODUS can support multiple
interacting versions of concurrent, distributed programs.

[83] Twittie Senivongse. Enabling flexible cross-version interoperability for distributed services. In Intl.
Symposium on Dist. Objects and Applications, Edinburgh, UK, 1999.

Describes how to use mappers to enable cross-version interoperation during distributed up-
grades. Argues that this interrupts service less than systems that atomically upgrade all
clients and servers that use a changing interface. Describes a UI that guides the evolver (up-
grader) through automatic generation of mapper (simulation) code. Restricts autogenerated
wrappers to 1-to-1 mapping from old method calls to new ones (in general, the wrapper
could call multiple methods on many different servers). Categorizes the supported kinds of
interface evolution, including subtyping. Also discusses chains of mappers, backwards map-
pers (new-to-old), propagation of supertype changes to subtypes, and optimizations (like
deprecating old mappers).

[84] Twittie Senivongse and Ian Utting. A model for evolution of services in distributed systems. In Spaniol
Schill, Mittasch and Popien, editors, Distributed Platforms, pages 373–385. Chapman and Hall, January
1996.

16



Uses mapping operators to provide “evolution transparency” (behavioral compatibility be-
tween versions). No forward compatibility, SO state, failure mode, or correctness criteria.
Supports adapter chaining, automatic adapter generation, and non-subtype evolution.

[85] Lui Sha, Ragunathan Rajkuman, and Michael Gagliardi. Evolving dependable real-time systems. Tech-
nical Report CMS/SEI-95-TR-005, CMU, 1995.

Describes the Simplex architecture for supporting evolution of real-time systems that use
commercial off-the-shelf (COTS) components. Upgrades are supported by grouping a set of
analytically redundant components (i.e., that satisfy the same abstract spec) into a subsystem
module. Each module contains a safety component that is assumed correct but may be
inefficient, a baseline component that acts as the “leader” of the replica group, and an
optional new component that is evaluated against the other two. Each module also contains
a management system that monitors the components for errors (e.g. functional or resource
utilization). If the new component behaves correctly according toa user-specified metric, the
system replaces the baseline component with the new one. A two-phase protocol is used to
atomically switch over a set of distributed components.

[86] Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison. How to upgrade 1500 workstations
on Saturday, and still have time to mow the yard on Sunday. In Proc. of the 9th USENIX Sys. Admin.
Conf., pages 59–66, Berkeley, September 1995. Usenix Association.

[87] Andrea H. Skarra and Staney B. Zdonik. The management of changing types in an object-oriented
database. In OOPSLA, pages 483–495, 1986.

This system (ENCORE) makes type changes by creating new versions. Objects (instances)
retain their version unless they are coerced (transformed) to another version. To satisfy cross-
version method calls/field accesses, each type has a version set interface (VSI). The VSI is
the union of all methods anf fields of all the versions of that type; therefore, any program
that accesses any version of the type can access the VSI correctly. Accesses are passed from
the VSI to the underlying instance. If the access fails (e.g., because the target method/field
doesn’t exist or the access would read/write an illegal value), then an error handler in the
VSI can substitute a response (e.g., default/alternate return value). This system handles not
only changes to a type definition, but also changes to the type hierarchy. It also uses boolean
formulas in type specs to automatically determine when handlers are needed. This system
does not support changes to method/field semantics across versions (e.g., readOdometer()
cannot change from returning miles to km; instead, you need to remove one method and
add another). More importantly, the number of handlers scales as the square of the number
of versions, because each time a version is added, handlers must be added for all the other
versions.

[88] Marcin Solarski and Hein Meling. Towards upgrading actively replicated servers on-the-fly. In Workshop
on Dependable On-line Upgrading of Dist. Systems [97].

Upgrades a replicated server by upgrading each replica in turn. Assumes that (1) multiple
upgrades do not interleave, (2) version v+1 offers a compatible interface to version v, (3)
there exists a mapping from version v’s state to version v+1, and (4) clients only use ex-
tensions offered by v+1’s interface after all replicas are upgraded. Upgrades are scheduled
by totally ordering the replicas (using some replica identifier). Assumes full compatibility
between different versions, so doesn’t need to convert messages between versions (i.e., no
simulation mode).

[89] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma Da Silva, Gregory R.
Ganger, Orran Krieger, Michael Stumm, Marc Auslander, Michal Ostrowski, Bryan Rosenburg, and
Jimi Xenidis. System support for online reconfiguration. In Proc. of the Usenix Technical Conference,
2003.

17



Implements dynamic interposition and hot-swapping for components in the K42 operating
system. In the common case, nothing is interposed; interposers installed dynamically by
modifying a call indirection table. Interposition can add wrappers to a component that can
take action before and after each call to the component, like a profiler. Interposition also
enables hot-swapping: an interposed Mediator blocks new calls to the component, lets the
old calls drain, transfers state to the new component, then unblocks the calls. This scheme
depends on the fact that requests to a component are short-lived, and this kind of component
change is called Read-Copy Update (RCU).

[90] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith. Live upgrades of CORBA applications using
object replication. In IEEE Intl. Conf. on Software Maintenance (ICSM), pages 488–497, Florence,
Italy, November 2001.

Uses replication of CORBA objects to support upgrades without interrupting service. Rather
than allowing the system to exist in a hybrid state (i.e., where different objects are at
different versions), the upgrade executes an “atomic switchover” that changes all objects from
one version to another. Reliable, totally-ordered multicast ensures atomicity. If the upgrade
changes an objects’ interface, all clients that use that interface must also be upgraded at the
switchover. Furthermore, all affected objects must be quiescent when the switchover occurs.
The system uses wrapper functions to loosen this quiescence requirement (i.e., by translating
old calls to new ones). The system provides an “upgrade preparer” tool that automatically
generates wrapper functions and state transformers given the old and new versions of an
object’s code. This work follows that of Kramer and Magee, Hofmeister and Purtilo, and
Bidan et al.

[91] A. Trigdell and P. Mackerras. The rsync algorithm. Technical report, 1998. http://rsync.samba.org.

[92] E. Truyen, W. Joosen, and P. Verbaeten. Consistency management in the presence of simultane-
ous client-specific views. In Proceedings of the International Conference on Software Maintenance
(ICSM’02), pages 501–510. IEEE Computer Society, October3–6 2002.

[93] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Nørregaard Jørgensen. Dynamic and selective
combination of extensions in component-based applications. In Proceedings of the 23rd International
Conference on Software Engeneering (ICSE’01), pages 233–242. IEEE Computer Society, May12–19
2001.

[94] Robert K. Weiler. Automatic upgrades: A hands-on process. Information Week, March 2002.

Weiler argues that fully automatic upgrades are dangerous, since automatic upgrade mecha-
nisms often introduce incompatibilities in the system. Part of the problem is that each ven-
dor develops and deploys their own automatic upgrade system, and systems from different
vendors don’t work together (e.g., to detect and resolve dependencies and incompatibilites).
Standards for automatic upgrade systems would help address these problems by allowing dif-
ferent vendors’ systems to interoperate. Another thing that could help is a log of all changes
made to a PC’s configuration and a record of when problems occur. This helps users identify
bad upgrades; these upgrades can be removed if they support “automatic restoration” (i.e.,
rollback).

[95] Linda Wills et al. An open platform for reconfigurable control. IEEE Control Systems Magazine, June
2001.

Uses real-time CORBA to implement component-based control systems, and uses a publish-
subscribe communication bus to loosen component coupling (and make reconfiguration eas-
ier). Components specify input and output ports along qith QoS constraints (priority, sample
rate, execution time). Reconfiguration can create components, change port connections, and

18



alter QoS constraints. Authors propose to use common controller design patterns to support
common reconfigurations. Cites Oreizy et al. as main previous work.

[96] Eric Wohlstadter, Brian Toone, and Prem Devanbu. A framework for flexible evolution in distributed
heterogeneous systems. In International Workshop on Principles of Software Evolution, pages 39–42,
Orlando, Florida, 2002.

[97] Workshop on Dependable On-line Upgrading of Dist. Systems in conjunction with COMPSAC 2002,
Oxford, England, August 2002.

[98] Robert Wrembel. Object-oriented views: Virtues and limitations. In 13th International Symposium on
Computer and Information Sciences (ISCIS), Antalya, November 1998.

A survey of techniques for supporting object-oriented views. Relevant to upgrades because
simulation objects for different versions act like different views on the state of a node.

[99] Stanley B. Zdonik. Maintaining consistency in a database with changing types. SIGPLAN Notices,
21(10):120–127, October 1986.

A nice summary of the ideas presented in [87]. Ignores the issue of changes to the type
hierarchy; just deals with version changes that add/remove/change methods and fields.

19


