
How to Resolve SDSI Names Without Closure

Sameer Ajmani

MIT Computer Science and AI Lab
200 Technology Square, Cambridge, MA 02139, USA

ajmani@csail.mit.edu

First Draft: June 6, 2002
Last Modified: February 28, 2004

1 Introduction

Previous work on SDSI name resolution and autho-
rization checking requires that the set of certificates
be closed under name-reduction [2, 3, 5]. This paper
presents two new algorithms that support efficient
and complete SDSI name resolution without requir-
ing closure over the set of certificates. This is partic-
ularly important for large, distributed certificate sets
where the expense of calculating the full closure may
be prohibitive in terms of time, storage, and/or com-
munication.

The algorithms work by fetching the required cer-
tificates from a directory and then calculating the clo-
sure locally over those certificates. Our main contri-
butions are (1) determining which certificates must
be fetched to derive a result, (2) determining which
operations the certificate directory must support, and
(3) showing that it is possible to “reverse” name res-
olution; that is, given a key, we can determine the
set of names that resolve to it. This is particularly
valuable for authorization checks, since the number
of names per key is usually much smaller than the
number of keys per name.

The first algorithm takes a name and returns its
value (a set of keys). This is useful for determining
the set of keys that can access a protected resource.
The second algorithm takes a key and returns the set
of local names whose value contains that key. This is
useful for determining whether a particular key can
access a protected resource.

Both algorithms can be combined with SPKI au-
thorization certificates to support efficient authoriza-
tion checks without closure. We have implemented

the algorithms as part of JSDSI [1], an open source
Java SPKI/SDSI implementation. We have not yet
extended these algorithms to support threshold sub-
jects.

2 Data Model

We define the following data types:

• A principal is a public key.

• A name is a 2-tuple: 〈issuer, names〉. Issuer is
the principal that defines this name; i.e., issuer
identifies the namespace in which this name is
defined. Names is a non-empty sequence of
strings. If names contains exactly one string,
this is a local name that is defined by this is-
suer. Otherwise, this is an extended name that is
resolved recursively through a series of names-
paces. The value of a name is a set of principals;
this value is defined by certificates signed by the
issuer of the name.

• A subject is either a principal or a name.

• A certificate is a 2-tuple: 〈name, subject〉.
Name is a local name. A certificate states that
the value of its name is a set that includes the
value of its subject.

• A signature is a cryptographic signature.

• A sequence is an ordered sequence of
〈certificate, signature〉 pairs, where each
signature is the certificate issuer’s crypto-
graphic signature of the certificate.

1



• A proof is a 3-tuple: 〈name, subject, sequence〉.
A proof is essentially a name-subject binding
coupled with the evidence for that binding (cer-
tificates and signatures). A verifier can check a
proof by treating each certificate as a “rewrite
rule” and checking whether the sequence of
rules rewrites the proof’s name to its subject [3].
Thus, verification takes linear time in the length
of the proof’s sequence.

3 Basic Closure Algorithm

We begin by showing how to resolve SDSI names
using the name-reduction closure over a certificate
set [3]. The result of a name resolution is a set of
proofs that bind the desired name to principals. This
algorithm is not designed to work in distributed sys-
tems, although it can be adapted to that environment
using a distributed hash table [2]. Later sections will
extend this algorithm to work with any certificate di-
rectory that provides the required lookup services.

Figure 1 gives the pseudocode for this algorithm.
The core routine is compose, which composes two
proofs. Composition creates a new proof that repre-
sents a conclusion drawn from the two input proofs.
The new proof contains the proper sequence of cer-
tificates to support this conclusion. Only certain
pairs of proofs meet the precondition of compose;
we call such proof pairs compatible. Compose does
not commute.

We illustrate compose with an example. Suppose
we have two compatible proofs: (KMIT staff −→
KMIT faculty) and (KMIT faculty −→ KRivest). The
first says that “KMIT staff” is a set that contains
“KMIT faculty”; the second says that “KMIT fac-
ulty” contains the principal KRivest. Given these two
proofs, compose returns the proof (KMIT staff −→
KRivest). This new proof contains the concatena-
tion of the sequences of certificates of the two input
proofs, which is exactly what the verifier needs to
check this proof.

The closure algorithm uses three local hash tables
[4]:

check Maps a 〈name, subject〉 pair to a proof with
the same name and subject. Used to avoid cre-
ating duplicate proofs and to terminate loops.

insert(certificate c)
proof p
p.name← “K n” (the name bound by c)
p.subject← c’s subject
p.sequence← c, cK−1

insert(p)

insert(proof p)
if (check[p.name, p.subject] is empty)

check[p.name, p.subject]← p
if (p.subject is a name)

compatible[prefix(p.subject)]
← compatible[prefix(p.subject)]∪ {p}

set← value[prefix(p.subject)]
for each p′ ∈ set

insert(compose(p,p′))
else

value[p.name]← value[p.name] ∪ {p}
set← compatible[p.name]
for each p′ ∈ set

insert(compose(p′, p))

// returns the local name that begins n
prefix(name n)

return name〈n.issuer, n.names[0]〉

// requires p1.subject = p2.name · X
// for some (possibly empty) sequence of strings X
// returns the composed proof p
compose(proof p1, proof p2)

p.name← p1.name
p.subject← p2.subject · X
p.sequence← p1.sequence · p2.sequence
return p

Figure 1: Basic closure algorithm

2



value Maps a local name n to a set of proofs whose
name is n and whose subject is a principal. That
is, value maps a name to proofs that resolve that
name.

compatible Maps a local name n to a set of proofs
whose subject is a name that starts with n. Thus,
proofs whose name is n are compatible with
proofs in compatible[n].

The insert routine is designed to maintain a sin-
gle invariant: if proofs p1 and p2 are compatible
and if insert(p1) and insert(p2) occur (in any order),
then insert(compose(p1 , p2)) occurs before one of
the parent insertions completes. This property guar-
antees that when all calls to insert complete, if there
is some sequence of proof compositions that yields a
proof (n −→ k) for some local name n and some prin-
cipal k, then value[n] will contain that proof. Given
this property and a set of certificates, one can easily
determine the value of a local name n by calling in-
sert on each certificate and then looking up value[n].

Inserting a proof p works as follows: if p has al-
ready been inserted, return immediately; otherwise,
add p to the check table to prevent future insertions
of p. If p’s subject is a name, then add p to the com-
patible table, look up compatible proofs in the value
table, and recursively insert the compositions of p
with the compatible proofs. Otherwise, p’s subject
is a principal (or other non-name object), so add p
to the value table, look up compatible proofs in the
compatible table, and recursively insert the compo-
sitions.

This algorithm has two major drawbacks. First,
this algorithm takes a long time to run over a large
set of certificates (O(N3) for N certificates), espe-
cially if the set is distributed over a network. Second,
this algorithm generates all possible proofs given the
certificate set, even though the user may only need
a particular proof or set of proofs. This wastes both
time and storage.

4 Name Resolution

We improve on the basic closure algorithm with our
name resolution algorithm in Figure 2. This algo-
rithm does not maintain closure over the entire cer-
tificate set; instead, it fetches only the certificates

// returns all reducing proofs whose name is n
resolve(name n)

load-value(n)
return value[n]

insert(proof p)
if (check[p.name, p.subject] is empty)

check[p.name, p.subject]← p
if (p.subject is a name)

compatible[prefix(p.subject)]
← compatible[prefix(p.subject)]∪ {p}

. load-value(prefix(p.subject))
set← value[prefix(p.subject)]
for each p′ ∈ set

insert(compose(p,p′))
else

value[p.name]← value[p.name] ∪ {p}
set← compatible[p.name]
for each p′ ∈ set

insert(compose(p′, p))

load-value(name n)
if n < loaded-value

loaded-value← loaded-value ∪ {n}
set← fetch proofs whose name is n
for each p ∈ set

insert(p)

Figure 2: Name resolution algorithm

needed to resolve the requested name and calculates
closure locally over those certificates. The only re-
quirement is that the certificate directory be capable
of returning all proofs whose name is a particular lo-
cal name.

The change to the body of insert is marked by ..
The load-value routine accesses the certificate di-
rectory and inserts all proofs that resolve the given
name. Load-value uses a local cache, loaded-value,
to ensure that the certificate directory is only ac-
cessed once per name.1 The rest of the insert rou-
tine runs the compositions needed to calculate clo-
sure over the fetched certificates (possibly requiring
additional fetches). Thus, to determine the value of
a local name, we call load-value on that name and
then look up value[n].

1One should, of course, periodically refresh the cache. This
involves purging expired or revoked proofs and adding any new
ones using insert.

3



The main problem with resolve is that it might ex-
plore large areas of the certificate graph. Resolve
starts from the desired name and does a depth-first
search. If that name or a name it depends on is bound
to a large set of keys, the search may take a long time.
However, resolve is careful not to repeat work, so the
total amount of work done is proportional to the size
of the result. Thus, resolve is useful when one wants
to determine the complete value of a name, for ex-
ample, to determine which principals can access a
protected resource.

5 Unresolution

The previous algorithm can be extremely inefficient
for checking whether a particular principal can ac-
cess a resource. For example, suppose a resource is
only accessible by principals in the group “KUSA cit-
izens”. To determine whether a key K can access
this resource, one must first determine the value of
“KUSA citizens”, which contains millions of princi-
pals!

Instead, it is far more efficient to determine which
names’ values contain K. For most principals, this is
a small set of names.2 One way to do this is to cal-
culate closure over the set of certificates then locate
those proofs whose subject is K. However, calcu-
lating closure over a large, distributed certificate set
may be impractical. Instead, we would like to fetch
only the required certificates from a certificate direc-
tory and calculate closure locally over these. We call
this process “unresolution” of a principal; Figure 3
presents our algorithm.

This algorithm uses a fourth local hash table, re-
verse, that maps a principal to proofs whose subject
is that principal. This algorithm requires that the cer-
tificate directory support two kinds of lookups. First,
given a principal k, the directory should return proofs
whose subject is k. Second, given a name n, the di-
rectory should return proofs whose subject is a name
that starts with n. Two caches, loaded-reverse and
loaded-compatible, ensure we only access the cer-
tificate directory once for a given query.

2An exception might be a well-known individual, such as the
US president, who would be identified by local names in many
different namespaces

// returns all reducing proofs whose subject is k
unresolve(principal k)

load-reverse(k)
return reverse[k]

insert(proof p)
if (check[p.name, p.subject] is empty)

check[p.name, p.subject]← p
if (p.subject is a name)

compatible[prefix(p.subject)]
← compatible[prefix(p.subject)]∪ {p}

set← value[prefix(p.subject)]
for each p′ ∈ set

insert(compose(p,p′))
else

value[p.name]← value[p.name] ∪ {p}
. reverse[p.subject]← reverse[p.subject] ∪ {p}
. load-compatible(p.name)

set← compatible[p.name]
for each p′ ∈ set

insert(compose(p′, p))
. load-reverse(p.name.issuer)

load-compatible(name n)
if n < loaded-compatible

loaded-compatible← loaded-compatible ∪ {n}
set← fetch proofs whose subject starts with n
for each p ∈ set

insert(p)

load-reverse(subject s)
if s < loaded-reverse

loaded-reverse← loaded-reverse ∪ {s}
set← fetch proofs whose subject is s
for each p ∈ set

insert(p)

Figure 3: Unresolution algorithm

4



The differences between this version of insert and
the original are marked by .. This reverse map-
ping alone is enough to discover those names that
are bound directly to a given principal. However,
this will not find extended names that are bound
to that principal. To do so, this algorithm recur-
sively searches through each name’s issuer using
load-reverse. This discovers any extended names
that could resolve to the principal; the calls to load-
compatible ensure that the necessary compositions
occur to find proofs for those extended names.

We clarify this process with an example. Suppose
we have the following set of proofs in our certificate
directory:

KMIT staff −→ KMIT faculty assistant (1)

KMIT faculty −→ KRivest (2)

KRivest assistant −→ KBe (3)

If we unresolve KBe, we immediately load-reverse
KBe and insert (3). This in turn causes us to load-
reverse KRivest. We then insert (2), which causes us
to load-compatible proofs whose subject starts with
“KMIT faculty”. This includes (1), so it is also in-
serted. This insertion causes (1) to be composed with
(2), which is in our local value table. The result-
ing proof, (KMIT staff −→ KRivest assistant), is recur-
sively inserted and so is composed with (3), which
is also in our local value table. This final result,
(KMIT staff −→ KBe), is inserted. Thus, reverse[KBe]
contains “KMIT staff” and “KRivest assistant” (from
the original insertion of (3)).

The main problem with unresolve is that it must
recursively explore every path of certificates that
leads to a particular key. Given the “six degrees of
separation” phenomenon, this could lead to a very
large fraction of the set of principals! The simplest
defense against this problem is to truncate the search
at a certain depth, since longer certificate chains are
less trustworthy than shorter ones. An analysis of
real certificate networks would provide better insight
into this problem.

6 Extended Names

We have defined both resolve and unresolve in terms
of local names: resolve finds all keys in a local

name’s value, and unresolve finds all local names
that resolve to a key. In both cases, we may want to
use extended names instead. This is straightforward
using dummy names.

To resolve and extended name n, create a dummy
proof p whose name is some dummy name d, whose
subject is n, and whose sequence is empty. Insert p,
then resolve d. The resulting proofs are the same as
those that resolve n.

To determine whether the value of n contains some
key k, construct proof p as above, insert p, then un-
resolve k. If the resulting proofs include one that
resolves d to k, then the same proof resolves n to k.

7 Directed Search

We have defined both resolve and unresolve to re-
turn sets of proofs. In access control, the user typi-
cally wants just one proof: one that shows that par-
ticular name resolves to a particular key. Given both
the desired name and key, we can make the above
algorithms more efficient. Specifically, each time in-
sert(p) is called, it checks whether p proves the de-
sired name-key binding. If so, it returns p immedi-
ately and aborts all further processing. A simple way
to implement this is to “return” p by throwing an ex-
ception.

8 Authorization Proofs

Each of our algorithms can be combined with au-
thorization certificates to find authorization proofs.
Suppose we want to determine which principals are
authorized to access a particular resource. For each
entry on that resource’s ACL, we perform a standard
graph search using authorization certificates [3, 5].
If we encounter a name in the subject of an autho-
rization certificate or an ACL entry, we process that
name using resolve. This maps the name to a set of
keys, allowing us to continue our graph search.

Suppose instead we want to determine whether a
particular principal can access a given resource. We
attempt a reverse graph search using authorization
certificates starting from the desired principal. In
addition, we unresolve each principal encountered
during the search. Then, for each such principal k,
reverse[k] contains authorization certificates whose

5



subject is a name that resolves to k. We can continue
our reverse graph search through these authorization
certificates.

9 Implementation

We have implemented the directed variants of reso-
lution, unresolution, and authorization discovery part
of the JSDSI library [1]. Given a cert (issuer, name
or auth, and subject) and a certificate store, our im-
plementatoion searches for a proof for the cert using
signed certificates from the store. These routines are
accessible via the java.security.cert.CertPathBuilder
interface defined in the Java SDK. We illustrate its
use with an example:

boolean isProvable(Cert cert,

CertStore store)

throws CertPathBuilderException,

CertPathValidatorException

{

jsdsi.Provider.install();

CertPathBuilder builder =

CertPathBuilder.getInstance("SPKI");

if (doUnresolution) {

// search subject-to-issuer

jsdsi.CertPathParameters params =

new SubjectCertPathParameters(cert, store);

} else {

// search issuer-to-subject

jsdsi.CertPathParameters params =

new IssuerCertPathParameters(cert, store);

}

// run the search

jsdsi.CertPathBuilderResult bres =

(jsdsi.CertPathBuilderResult)

builder.build(params);

// manually examine the resulting path

List<Certificate> path =

bres.getCertPath().getCertificates();

path.get(0).getCert(); // the first cert

// automatically check the result

CertPathValidator validator =

CertPathValidator.getInstance("SPKI");

jsdsi.CertPathValidatorResult vres =

(jsdsi.CertPathValidatorResult)

validator.validate(bres.getCertPath(), params);

return vres.isOk();

}

References

[1] JSDSI: A Java SPKI/SDSI implementation, 2002.
http://jsdsi.sourceforge.net.

[2] S. Ajmani, D. Clarke, C.-H. Moh, and S. Richman.
ConChord: Cooperative SDSI certificate storage and
name resolution. In Proceedings International Work-
shop on Peer-to-Peer Systems (IPTPS), Mar. 2002.

[3] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Mor-
cos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. Journal of Computer Security, 2001.

[4] C. M. Ellison and D. E. Clarke. High speed TUPLE
reduction. Memo, Intel, 1999.

[5] N. Li, W. H. Winsborough, and J. C. Mitchell. Dis-
tributed credential chain discovery in trust manage-
ment. In Proc. 8th ACM CCS, Nov. 2001.

6


