
Automatic Software Upgrades for Distributed Systems
Sameer Ajmani and Barbara Liskov, MIT CSAIL

Liuba Shrira, Brandeis University
ajmani@csail.mit.edu • pmg.csail.mit.edu/upgrades

Goals
To support automatic software upgrades for long-lived, large-scale
distributed systems, e.g., peer-to-peer networks, content
distribution networks, server clusters, and sensor networks; and to
enable those systems to provide service during upgrades.

Challenges
● Not all nodes can upgrade at the same time, so each upgrade
must define a schedule for when nodes should upgrade.
● Nodes running different versions may need to interact, so we
enable nodes to simulate multiple versions at once. However,
perfect simulation is not always possible or practical.

Approach
● The systems of interest are robust to node failures, so we model
a node upgrade as a soft restart.
● Upgrades are rare, so we optimize for same-version interaction.
● Nodes recover from persistent state, so we execute state
transforms on persistent state.

Model
● A system is a set of objects that interact via remote method calls
● Each object resides on a node and has an identity and state
● A single trusted party defines the software for an entire system
● Objects running the same version interoperate correctly
● A system upgrade defines a set of class upgrades, each of which
defines how objects of a given old class upgrade to a new class

Status
• Correctness criteria defined
• Upgrade server+database implemented as an SFS server
• Upgrade layer+manager implemented as a TESLA handler
• Upgrade scenarios planned for Thor, SFSACL, NFSv3/v4

Upgrade Infrastructure
● Logically centralized upgrade server

● Publishes upgrades for download
● Logically centralized upgrade database

● Stores information on upgrade progress
● Per-node upgrade manager

● Downloads, schedules, and installs upgrades
● Per-node upgrade layer

● Handles cross-version calls via simulation
objects (SOs). PastSOs handle older versions;
futureSOs handle newer versions.

After V+1
upgrade

V-1
pastSO

Version
V

state

V+1
futureSO

V+2
futureSO

Initialize
node state

Initialize
SO state

V-1
pastSO

Version
V+1
state

V
pastSO

V+2
futureSO

Before V+1
upgrade

V-1
pastSO

Version
V

code

V+1
futureSO

V+2
futureSO

Node

Upgrade Layer: annotates outgoing calls with version numbers,
and dispatches incoming calls to the appropriate object

Upgrade Manager: downloads, schedules,
and installs upgrades on this node

Future Work
• Evaluate lazy vs. eager state transforms
• Recover from buggy upgrades
• Allow the upgrade infrastructure to upgrade
• Investigate upgrades for sensor networks

[Node A]
V

[Node B]
V

[Node C]
V

[Node D]
V

[Node A]
V+1

[Node B]
V+1

[Node C]
V+1

[Node D]
V+1

Nodes may
discard pastSOs

for version V

Version V+1
installed

[Node A]
V

[Node B]
V

[Node C]
V

[Node D]
V

V+1

V+1 V+1

V+1 Nodes B and
D upgrade to
version V+1

[Node A]
V

[Node B]
V+1

[Node C]
V

[Node D]
V+1

V+1

V+1
V

V

[Node A]
V+1

[Node B]
V+1

[Node C]
V+1

[Node D]
V+1

V

V V

V

Nodes A and
C upgrade to
version V+1

Nodes B and D
install pastSOs
for version V

Nodes A and C
install pastSOs
for version V

Nodes install
futureSOs for
version V+1

All nodes have
upgraded, so:

Research Questions
● How do upgrades affect a system's availability, fault-tolerance, performance, and security?
● How do different upgrade schedules affect these properties?
● How well can we simulate one version's behavior on another?
● How well can we transform one version's state to the next?
● How do we reason about upgrade correctness?

Node Upgrade
● Install futureSO to support the new version
● Wait until schedule allows node to upgrade
● Halt node software (abort operations in progress)
● Run state transform function (pictured left)
● Install pastSO to support the old version
● Start the new node software

System Upgrade
● New version is installed at the upgrade server
● Nodes discover the new version via polling or gossip
● Individual nodes upgrade according to the schedule
● Nodes eventually garbage-collect old pastSOs

System upgrade from version V to V+1

