
Appendix A

CLU Reference Manual

For a nominal fee universities can obtain an implementation of CLU by

writing to the authors. At present there are implementations for the DEC20

and DEC Vax and Motorola 68000-based Unix systems.

A.1 Syntax

We use an extended BNF grammar to de�ne the syntax. The general form

of a production is

nonterminal ::= alternative | alternative | ... | alternative

The following extensions are used:

a , ... a list of one or more as separated by commas: \a" or \a, a" or

\a, a, a", etc.

f a g a sequence of zero or more as: \ " or \a" or \a a", etc.

[a] an optional a: \ " or \a".

Nonterminal symbols appear in lightface. Reserved words appear in

boldface. All other terminal symbols are nonalphabetic and appear in light-

face:

module ::= f equate g procedure

| f equate g iterator

| f equate g cluster

procedure ::= idn = proc [parms] args [returns] [signals] [where]

routine body

end idn

337

338 APPENDIX A. CLU REFERENCE MANUAL

iterator ::= idn = iter [parms] args [yields] [signals] [where]

routine body

end idn

cluster ::= idn = cluster [parms] is idn , ... [where]

cluster body

end idn

parms ::= [parm , ...]

parm ::= idn , ... : type | idn , ... : type spec

args ::= ([decl , ...])

decl ::= idn , ... : type spec

returns ::= returns (type spec , ...)

yields ::= yields (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]

where ::= where restriction , ...

restriction ::= idn has oper decl , ...

| idn in type set

type set ::= f idn | idn has oper decl , ... f equate g g | idn

oper decl ::= op name , ... : type spec

op name ::= name [[constant , ...]]

constant ::= expression | type spec

routine body ::= f equate g

f own var g

f statement g

cluster body ::= f equate g rep = type spec f equate g

f own var g

routine f routine g

routine ::= procedure | iterator

equate ::= idn = constant | idn = type set

own var ::= own decl

| own idn : type spec := expression

| own decl , ... := invocation

type spec ::= null | bool | int | real | char | string | any | rep | cvt

| array [type spec] | sequence [type spec]

| record [�eld spec , ...] | struct [�eld spec , ...]

A.1. SYNTAX 339

| oneof [�eld spec , ...] | variant [�eld spec , ...]

| proctype ([type spec , ...]) [returns] [signals]

| itertype ([type spec , ...]) [yields] [signals]

| idn [constant , ...] | idn

�eld spec ::= name , ... : type spec

statement ::= decl

| idn : type spec := expression

| decl , ... := invocation

| idn , ... := invocation

| idn , ... := expression , ...

| primary . name := expression

| primary [expression] := expression

| invocation

| while expression do body end

| for [decl , ...] in invocation do body end

| for [idn , ...] in invocation do body end

| if expression then body

f elseif expression then body g

[else body]

end

| tagcase expression

tag arm f tag arm g

[others : body]

end

| return [(expression , ...)]

| yield [(expression , ...)]

| signal name [(expression , ...)]

| exit name [(expression , ...)]

| break

| continue

| begin body end

| statement resignal name , ...

| statement exceptf when handler g

[others handler]

end

tag arm ::= tag name , ... [(idn : type spec)] : body

when handler ::= when name , ... [(decl , ...)] : body

| when name , ... (�) : body

others handler::= others [(idn : type spec)] : body

body ::= f equate g

f statement g

340 APPENDIX A. CLU REFERENCE MANUAL

expression ::= primary

| (expression)

| � expression % 6 (precedence)

| � expression % 6

| expression �� expression % 5

| expression // expression % 4

| expression / expression % 4

| expression � expression % 4

| expression k expression % 3

| expression + expression % 3

| expression � expression % 3

| expression < expression % 2

| expression <= expression % 2

| expression = expression % 2

| expression >= expression % 2

| expression > expression % 2

| expression �< expression % 2

| expression �<= expression % 2

| expression �= expression % 2

| expression �>= expression % 2

| expression �> expression % 2

| expression & expression % 1

| expression cand expression % 1

| expression j expression % 0

| expression cor expression % 0

primary ::= nil | true | false

| int literal | real literal | char literal | string literal

| idn

| idn [constant , ...]

| primary . name

| primary [expression]

| invocation

| type spec$f �eld , ... g

| type spec$[[expression :] [expression , ...]]

| type spec$name [[constant , ...]]

| force [type spec]

| up (expression)

| down (expression)

invocation ::= primary ([expression , ...])

�eld ::= name , ... : expression

A.2. LEXICAL CONSIDERATIONS 341

A.2 Lexical Considerations

A module is written as a sequence of tokens and separators. A token is a

sequence of \printing" ASCII characters (octal value 40 through 176) rep-

resenting a reserved word, an identi�er, a literal, an operator, or a punc-

tuation symbol. A separator is a \blank" character (space, vertical tab,

horizontal tab, carriage return, newline, form feed) or a comment. In gen-

eral, any number of separators may appear between tokens. Tokens and

separators are described in more detail in the following sections.

A.2.1 Reserved Words

The following character sequences are reserved words:

any down int record tagcase

array else is rep then

begin elseif iter resignal true

bool end itertype return type

break except nil returns up

cand exit null sequence variant

char false oneof signal when

cluster for others signals where

continue force own string while

cor has proc struct yield

cvt if proctype tag yields

do in real

Upper- and lowercase letters are not distinguished in reserved words.

For example, \end," \END," and \eNd" are all the same reserved word.

Reserved words appear in boldface in this document, except for names of

types.

A.2.2 Identi�ers

An identi�er is a sequence of letters, digits, and underscores that begins

with a letter or underscore and that is not a reserved word. As in reserved

words, upper- and lowercase letters are not distinguished in identi�ers.

In the syntax there are two di�erent nonterminals for identi�ers. The

nonterminal idn is used when the identi�er has scope (see section A.4.1);

idns are used for variables, parameters, and module names, and as abbre-

viations for constants. The nonterminal name is used when the identi�er

is not subject to scope rules; names are used for record and structure se-

lectors, oneof and variant tags, operation names, and exceptional condition

names.

342 APPENDIX A. CLU REFERENCE MANUAL

A.2.3 Literals

There are literals for naming objects of the built-in types null, bool, int,

real, char, and string. Their forms are discussed in section A.3.

A.2.4 Operators and Punctuation Symbols

The following character sequences are used as operators and punctuation

symbols:

(: \ < �< + k

) := ' <= �<= - ��

f , n = �= � //

g . >= �>= / &

[$ > �> j

] �

A.2.5 Comments and Other Separators

A comment is a sequence of characters that begins with a percent sign (%),

ends with a newline character, and contains only printing ASCII characters

and horizontal tabs in between.

A separator is a blank character (space, vertical tab, horizontal tab,

carriage return, newline, form feed) or a comment. Zero or more separators

may appear between any two tokens, except that at least one separator is

required between any two adjacent non-self-terminating tokens: reserved

words, identi�ers, integer literals, and real literals.

A.3 Type Speci�cations

Within a program, a type is speci�ed by a syntactic construct called a

type spec. The type speci�cation for a type with no parameters is just the

identi�er (or reserved word) naming the type. For parameterized types, the

type speci�cation consists of the identi�er (or reserved word) naming the

parameterized type, together with the parameter values.

In addition to the built-in types (null, bool, int, real, char, string, and

any) and the built-in type classes (array, sequence, record, struct, variant,

oneof, proctype, and itertype), there are also type specs for user-de�ned

types. These have the form

idn [[constant , ...]]

where idn names the user de�ned type, each constant must be computable

at compile time (see section A.4.3), and constants of the appropriate types

and number must be supplied in the order speci�ed by the type.

A.4. SCOPES, DECLARATIONS, AND EQUATES 343

There are three special type speci�cations that are used for implement-

ing new abstractions: rep, cvt, and type. These forms are discussed in

sections A.8.3 and A.8.4. Within a module, formal parameters declared

with type can be used as type speci�cations.

Finally, identi�ers that have been equated to type speci�cations can also

be used as type speci�cations. Equates are discussed in section A.4.3.

Speci�cations for the built-in types and type classes are given in section

A.9.

A.4 Scopes, Declarations, and Equates

We now describe how to introduce and use constants and variables, and the

scope of constant and variable names.

A.4.1 Scoping Units

Scoping units follow the nesting structure of statements. Generally, a scop-

ing unit is a body and an associated \heading." The scoping units are

1. from the start of a module to its end,

2. from a cluster, proc, or iter to the matching end,

3. from a for, do, or begin to the matching end,

4. from a then or else in an if statement to the end of the corresponding

body,

5. from a tag or others in a tagcase statement to the end of the corre-

sponding body,

6. from a when or others in an except statement to the end of the

corresponding body, and

7. from the start of a type set to its end.

In this section we discuss only cases 1{6; the scope in a type set is discussed

in section A.8.4.

The structure of scoping units is such that if one scoping unit overlaps

another scoping unit (textually), then one is fully contained in the other.

The contained scope is called a nested scope, and the containing scope is

called a surrounding scope.

New constant and variable names may be introduced in a scoping unit.

Names for constants are introduced by equates, which are syntactically

restricted to appear grouped together at or near the beginning of scoping

344 APPENDIX A. CLU REFERENCE MANUAL

units. For example, equates may appear at the beginning of a body, but

not after any statements in the body. By contrast, declarations, which

introduce new variables, are allowed wherever statements are allowed, and

hence may appear throughout a scoping unit.

In the syntax there are two distinct nonterminals for identi�ers: idn and

name. Any identi�er introduced by an equate or declaration is an idn, as

is the name of the module being de�ned and any operations the module

has. An idn refers to a speci�c type or object. A name generally refers to

a piece of something and is always used in context; for example, names are

used as record selectors. The scope rules apply only to idns.

The scope rules are very simple:

1. An idn may not be rede�ned in its scope.

2. Any idn that is used as an external reference in a module may not be

used for any other purpose in that module.

Unlike other \block-structured" languages, CLU prohibits the rede�nition

of an identi�er in a nested scope. An identi�er used as an external reference

must name a module or constant in its program.

A.4.2 Declarations

Declarations introduce new variables. The scope of a variable is from its

declaration to the end of the smallest scoping unit containing its declara-

tion; hence variables must be declared before use.

There are two sorts of declarations: those with initialization and those

without. Simple declarations (those without initialization) take the form

decl ::= idn, ... : type spec

A simple declaration introduces a list of variables, all having the type given

by type spec. This type determines the types of objects that can be as-

signed to the variable. The variables introduced in a simple declaration

initially denote no objects; that is, they are uninitialized. Attempts to use

uninitialized variables (if not detected at compile time) cause the runtime

exception

failure(\uninitialized variable")

A declaration with initialization combines declarations and assignments

into a single statement. It is entirely equivalent to one or more simple decla-

rations followed by an assignment statement. The two forms of declaration

with initialization are

idn : type spec := expression

A.4. SCOPES, DECLARATIONS, AND EQUATES 345

and

decl

1

, ... , decl

n

:= invocation

These are equivalent to (respectively)

idn : type spec

idn := expression

and

decl

1

... decl

n

% declaring idn

1

... idn

m

idn

1

, ... , idn

m

:= invocation

In the second form, the order of the idns in the assignment statement is

the same as in the original declaration with initialization. (The invocation

must return m objects.)

A.4.3 Equates and Constants

An equate allows a single identi�er to be used as an abbreviation for a

constant that may have a lengthy textual representation. An equate also

permits a mnemonic identi�er to be used in place of a commonly used

constant, such as a numerical value. We use the term \constant" in a very

narrow sense here: Constants, in addition to being immutable, must be

computable at compile time. Constants are either types (built-in or user-

de�ned), or objects that are the results of evaluating constant expressions.

(Constant expressions are de�ned later.)

The syntax of equates is

equate ::= idn = constant | idn = type set

constant ::= type spec | expression

This section describes only the �rst form of equate; discussion of type sets

is deferred to section A.8.4.

An equated identi�er may be used as an expression. The value of such

an expression is the constant to which the identi�er is equated. An equated

identi�er cannot be used on the left-hand side of an assignment statement.

The scope of an equated identi�er is the smallest scoping unit surround-

ing the equate de�ning it; here we mean the entire scoping unit, not just

the portion after the equate. All the equates in a scoping unit must ap-

pear grouped near the beginning of the scoping unit. The exact placement

of equates depends on the containing syntactic construct; usually equates

appear at the beginnings of bodies.

Equates may be in any order within the group. Forward references

among equates in the same scoping unit are allowed, but cyclic dependencies

are illegal. For example,

346 APPENDIX A. CLU REFERENCE MANUAL

x = y

y = z

z = 3

is a legal sequence of equates, but

x = y

y = z

z = x

is not. Since equates introduce idns, the scoping restrictions on idns apply

(that is, the idns may not be de�ned more than once).

Identi�ers may be equated to type speci�cations, thus giving abbre-

viations for type names. Since equates cannot have cyclic dependencies,

though, directly recursive type speci�cations cannot be written. This does

not prevent the de�nition of recursive types, since we can use clusters to

write them.

A constant expression is an expression that can be evaluated at compile

time to produce an immutable object of a built-in type. Speci�cally this

includes

1. literals,

2. identi�ers equated to constants,

3. formal parameters (see section A.8.4),

4. procedure and iterator names, including force[t] for any type t, and

5. invocations of procedure operations of the built-in constant types, pro-

vided that all operands and all results are constant expressions; however,

we explicitly forbid the use of formal parameters as operands to invoca-

tions in constant expressions, since the values of formal parameters are not

known at compile time.

The built-in constant types are null, int, real, bool, char, string, sequence

types, oneof types, structure types, procedure types, and iterator types.

Any invocation in a constant expression must terminate normally; a pro-

gram is illegal if evaluation of any constant expression would signal an

exception. Illegal programs will not be executed.

A.5 Assignment and Invocation

Two fundamental actions of CLU are assignment of computed objects to

variables and invocation of procedures (and iterators) to compute objects.

Other actions are composed from these two by using various control
ow

A.5. ASSIGNMENT AND INVOCATION 347

mechanisms. Since the correctness of assignments and invocations depends

on a type-checking rule, we describe that rule �rst, then assignment, and

�nally invocation.

A.5.1 Type Inclusion

CLU is designed to allow complete compile-time type checking. The type

of each variable is known by the compiler. Furthermore, the type of ob-

ject that could result from the evaluation of any expression (invocation) is

known at compile time. Hence every assignment can be checked at compile

time to make sure that the variable is only assigned objects of its declared

type. The rule is that an assignment v := E is legal only if the set of objects

de�ned by the type of E (loosely, the set of all objects that could possibly

result from evaluating the expression) is included in the set of all objects

that could be denoted by v.

Instead of speaking of the set of objects de�ned by a type, we generally

speak of the type and say that the type of the expression must be included

in the type of the variable. If it were not for the type any, the inclusion rule

would be an equality rule. This leads to a simple interpretation of the type

inclusion rule: The type of a variable being assigned an expression must be

either the type of the expression or the type any.

A.5.2 Assignment

Assignment is the means of causing a variable to denote an object. The

simplest form of assignment is

idn := expression

In this case the expression is evaluated and the resulting object is assigned

to the variable. The expression must return a single object (whose type

must be included in that of the variable).

There are two forms of assignment that assign to more than one variable

at the same time:

idn , ... := expression , ...

and

idn , ... := invocation

The �rst form of multiple assignment is a generalization of simple as-

signment. The �rst variable is assigned the �rst expression, the second

variable the second expression, and so on. The expressions are all evalu-

ated (from left to right) before any assignments are performed. The number

of variables in the list must equal the number of expressions, no variable

348 APPENDIX A. CLU REFERENCE MANUAL

may occur more than once, and the type of each variable must include the

type of the corresponding expression. There is no form of this statement

with declarations.

The second form of multiple assignment allows retention of the objects

resulting from an invocation returning two or more objects. The �rst vari-

able is assigned the �rst object, the second variable the second object, and

so on. The order of the objects is the same as in the return statement

of the invoked routine. The number of variables must equal the number

of objects returned, no variable may occur more than once, and the type

of each variable must include the corresponding return type of the invoked

procedure.

The assignment symbol := is used in two other syntactic forms that

are not true assignments, but rather abbreviations for certain invocations.

These forms are used for updating collections such as records and arrays

(see section A.7.2).

A.5.3 Invocation

Invocation is the other fundamental action of CLU. In this section we dis-

cuss procedure invocation; iterator invocation is discussed in section A.7.6.

However, up to and including passing of arguments, the two are the same.

Invocations take the form

primary ([expression , ...])

A primary is a slightly restricted form of expression, which includes vari-

ables and routine names, among other things (see the next section).

The sequence of activities in performing an invocation are as follows:

1. The primary is evaluated. It must evaluate to a procedure or iterator.

2. The expressions are evaluated, from left to right.

3. New variables are introduced corresponding to the formal arguments of

the routine being invoked (that is, a new environment is created for the

invoked routine to execute in).

4. The objects resulting from evaluating the expressions (the actual argu-

ments) are assigned to the corresponding new variables (the formal argu-

ments). The �rst formal is assigned the �rst actual, the second formal the

second actual, and so on. The type of each expression must be included in

the type of the corresponding formal argument.

5. Control is transferred to the routine at the start of its body.

A.6. EXPRESSIONS 349

An invocation is considered legal in exactly those situations where all the

(implicit) assignments involved in its execution are legal.

It is permissible for a routine to assign an object to a formal argument

variable; the e�ect is just as if that object were assigned to any other

variable. From the point of view of the invoked routine, the only di�erence

between its formal argument variables and its other local variables is that

the formals are initialized by its caller.

Procedures can terminate in two ways: normally, returning zero or more

objects, or exceptionally, signaling an exception. When a procedure termi-

nates normally, the result objects become available to the caller and will

(usually) be assigned to variables or passed as arguments to other routines.

When a procedure terminates exceptionally, the
ow of control will not go

to the point of return of the invocation, but rather will go to an exception

handler, as described in section A.7.13.

A.6 Expressions

An expression evaluates to an object in the CLU universe. This object

is said to be the result or value of the expression. Expressions are used

to name the object to which they evaluate. The simplest expressions are

literals, variables, parameters, and routine names. These forms directly

name their result object. More complex expressions are generally built up

out of nested procedure invocations. The result of such an expression is the

value returned by the outermost invocation.

Like many other languages, CLU has pre�x and in�x operators for the

common arithmetic and comparison operations and uses the familiar syntax

for array indexing and record component selection (for example, a[i] and

r.s). However, in CLU these notations are considered to be abbreviations

for procedure invocations. This allows built-in types and user-de�ned types

to be treated as uniformly as possible, and also allows the programmer to

use familiar notation when appropriate.

In addition to invocation, four other forms are used to build complex

expressions out of simpler ones. These are the conditional operators cand

and cor (see section A.6.10), and the type conversion operations up and

down (see section A.6.12).

There is a syntactically restricted form of expression called a primary.

A primary is any expression that does not have a pre�x or in�x operator,

or parentheses, at the top level. In certain places the syntax requires a

primary rather than a general expression. This has been done to increase

the readability of the resulting programs.

As a general rule, procedures with side e�ects should not be used in

expressions, and programs should not depend on the order in which expres-

350 APPENDIX A. CLU REFERENCE MANUAL

sions are evaluated. However, to avoid surprises, the subexpressions of any

expression are evaluated from left to right.

A.6.1 Literals

Integer, real, character, string, boolean, and null literals are expressions.

The syntax for literals is given in the sections describing these types. The

type of a literal expression is the type of the object named by the literal.

A.6.2 Variables

Variables are identi�ers that denote objects of a given type. The type of a

variable is the type given in the declaration of that variable and determines

which objects may be denoted by the variable.

A.6.3 Parameters

Parameters are identi�ers that denote constants supplied when a parame-

terized module is instantiated (see section A.8.4). The type of a parameter

is the type given in the declaration of that parameter. Parameters of type

type cannot be used as expressions.

A.6.4 Equated Identi�ers

Equated identi�ers denote constants. The type of an equated identi�er is

the type of the constant that it denotes. Identi�ers equated to types and

type sets cannot be used as expressions.

A.6.5 Procedure and Iterator Names

Procedures and iterators may be de�ned either as separate modules or

within a cluster. Those de�ned as separate modules are named by expres-

sions of the form

idn [[constant , ...]]

The optional constants are the parameters of the procedure or iterator

abstractions. (Constants are discussed in section A.4.3.)

When a procedure or iterator is de�ned as an operation of a type, the

type name must be part of the name of the routine. The form for naming

an operation of a type is

type spec$name [[constant, ...]]

The type of a procedure or iterator name is just the type of the named

routine.

A.6. EXPRESSIONS 351

A.6.6 Procedure Invocations

Procedure invocations have the form

primary ([expression , ...])

The primary is evaluated to obtain a procedure object, and then the ex-

pressions are evaluated left to right to obtain the argument objects. The

procedure is invoked with these arguments, and the object returned is the

result of the entire expression. For a more detailed discussion see section

A.5.3.

Any procedure invocation P (E

1

; . . . ; E

n

) must satisfy two constraints:

The type of P must be of the form

proctype (T

1

; . . . ;T

n

) returns (R) signals (. . .)

and the type of each expression E

i

must be included in the corresponding

type T

i

. The type of the entire invocation expression is given by R.

Procedures can also be invoked as statements (see section A.7.1).

A.6.7 Selection Operations

Arrays, sequences, records, and structures are collections of objects. Se-

lection operations provide access to the individual elements or components

of the collection. Simple notations are provided for invoking the fetch and

store operations of array types, the fetch operation of sequence types, the

get and set operations of record types, and the get operations of structure

types. In addition, these short forms may be used for user-de�ned types

with the appropriate properties.

An element selection expression has the form

primary [expression]

This form is a short form for an invocation of a fetch operation and is

completely equivalent to

T$fetch(primary, expression)

where T is the type of primary. For example, if a is an array of integers,

then

a[27]

is completely equivalent to the invocation

array[int]$fetch(a, 27)

352 APPENDIX A. CLU REFERENCE MANUAL

The expression is legal whenever the corresponding invocation is legal. In

other words, T (the type of primary) must provide a procedure operation

named fetch, which takes two arguments whose types include the types of

primary and expression, and which returns a single result.

The use of fetch for user-de�ned types should be restricted to types with

arraylike behavior. Objects of such types will contain (along with other

information) a collection of objects, where the collection can be indexed in

some way. For example, it might make sense for an associative memory

type to provide a fetch operation to access the value associated with a key.

Fetch operations are intended for use in expressions; thus they should never

have side e�ects.

The component selection expression has the form

primary . name

This form is short for an invocation of a get name operation and is com-

pletely equivalent to

T$get name(primary)

where T is the type of primary. For example, if x has type RT = record[�rst:

int, second: real], then

x.�rst

is completely equivalent to

RT$get �rst(x)

The expression is legal whenever the corresponding invocation is legal. In

other words, T (the type of primary) must provide a procedure operation

named get name, which takes one argument whose type includes the type

of primary and returns a single result.

The use of get operations for user-de�ned types should be restricted

to types with recordlike behavior. Objects of such types will contain

(along with other information) one or more named objects. For example,

it might make sense for a type that implements channels to �les to provide

a get author operation, which returns the name of the �le's creator. Get

operations are intended for use in expressions; thus they should never have

side e�ects.

A.6.8 Constructors

Constructors are expressions that enable users to create and initialize ar-

rays, sequences, records, and structures. Constructors are not provided for

user-de�ned types.

An array constructor has the form

A.6. EXPRESSIONS 353

type spec $ [[expression:] [expression , ...]]

The type speci�cation must name an array type: array[T]. This is the type

of the constructed array. The expression preceding the colon must evaluate

to an integer and becomes the low bound of the constructed array. If this

expression is omitted, the low bound is 1. The expressions following the

colon are evaluated to obtain the elements of the array. They correspond

(from left to right) to the indexes low bound, low bound+1, low bound+2,

. . . . For an array of type array[T], the type of each element expression in

the constructor must be included in T.

An array constructor is computationally equivalent to an array create

operation, followed by a number of array addh operations. However, such

a sequence of operations cannot be written as an expression.

A sequence constructor has the form

type spec $ [[expression , ...]]

The type speci�cation must name a sequence type: sequence[T]. This is the

type of the constructed sequence. The expressions are evaluated to obtain

the elements of the sequence. They correspond (from left to right) to the

indexes 1, 2, 3, . . . : For a sequence of type sequence[T], the type of each

element expression in the constructor must be included in T.

A sequence constructor is computationally equivalent to a sequence new

operation, followed by a number of sequence addh operations.

A record constructor has the form

type spec $ f �eld , ... g

where

�eld ::= name , ... : expression

Whenever a �eld has more than one name, it is equivalent to a sequence of

�elds, one for each name. Thus the following two constructors are equiva-

lent:

R$fa, b: 7, c: 9g

R$fa: 7, b: 7, c: 9g

where

R = record[a: int, b: int, c: int]

In a record constructor, the type speci�cation must name a record type:

record[S

1

: T

1

; . . . ; S

n

: T

n

]. This will be the type of the constructed record.

The component names in the �eld list must be exactly the names S

1

; . . . ; S

n

,

although these names may appear in any order. The expressions are eval-

uated from left to right, and there is one evaluation per component name

354 APPENDIX A. CLU REFERENCE MANUAL

even if several component names are grouped with the same expression.

The type of the expression for component S

i

must be included in T

i

. The

results of these evaluations form the components of a newly constructed

record. This record is the value of the entire constructor expression.

A structure constructor has the form

type spec$f �eld , ... g

where (as for records)

�eld ::= name , ... : expression

Whenever a �eld has more than one name, it is equivalent to a sequence of

�elds, one for each name.

In a structure constructor, the type speci�cation must name a structure

type: struct[S

1

: T

1

; . . . ; S

n

: T

n

]. This will be the type of the constructed

structure. The component names in the �eld list must be exactly the names

S

1

; . . . ; S

n

, although these names may appear in any order. The expressions

are evaluated from left to right, and there is one evaluation per component

name even if several component names are grouped with the same expres-

sion. The type of the expression for component S

i

must be included in

T

i

. The results of these evaluations form the components of a newly con-

structed structure. This structure is the value of the entire constructor

expression.

A.6.9 Pre�x and In�x Operators

CLU allows pre�x and in�x notation to be used as a shorthand for the fol-

lowing operations. Table A.1 shows the shorthand form and the equivalent

expanded form for each operation. Here T is the type of the �rst operand.

Operator notation is used most heavily for the built-in types, but may be

used for user-de�ned types as well. When these operations are provided for

user-de�ned types, they should always be side-e�ect-free, and they should

mean roughly the same thing as they do for the built-in types. For example,

the comparison operations should only be used for types that have a natural

partial or total order. Usually the comparison operations (lt, le, equal, ge,

gt) will be of type

proctype (T, T) returns (bool)

The other binary operations (for example, add and sub) will be of type

proctype (T, T) returns (T) signals (. . .)

and the unary operations will be of type

proctype (T) returns (T) signals (. . .)

A.6. EXPRESSIONS 355

Table A.1 Shorthand forms for operations.

Shorthand Form Expansion

expr

1

� �expr

2

T$power(expr

1

; expr

2

)

expr

1

==expr

2

T$mod(expr

1

; expr

2

)

expr

1

=expr

2

T$div(expr

1

; expr

2

)

expr

1

� expr

2

T$mul(expr

1

; expr

2

)

expr

1

kexpr

2

T$concat(expr

1

; expr

2

)

expr

1

+ expr

2

T$add(expr

1

; expr

2

)

expr

1

� expr

2

T$sub(expr

1

; expr

2

expr

1

< expr

2

T$lt(expr

1

; expr

2

)

expr

1

<= expr

2

T$le(expr

1

; expr

2

)

expr

1

= expr

2

T$equal(expr

1

; expr

2

)

expr

1

>= expr

2

T$ge(expr

1

; expr

2

)

expr

1

> expr

2

T$gt(expr

1

; expr

2

)

expr

1

�< expr

2

� (expr

1

< expr

2

)

expr

1

�<= expr

2

� (expr

1

<= expr

2

)

expr

1

�= expr

2

� (expr

1

= expr

2

)

expr

1

�>= expr

2

� (expr

1

>= expr

2

)

expr

1

�> expr

2

� (expr

1

> expr

2

)

expr

1

&expr

2

T$and(expr

1

; expr

2

)

expr

1

jexpr

2

T$or(expr

1

; expr

2

)

�expr T$minus(expr)

�expr T$not(expr)

A.6.10 Cand and Cor

Two additional binary operators are provided. These are the conditional

and operator, cand, and the conditional or operator, cor.

expression

1

candexpression

2

is the boolean and of expression

1

and expression

2

. However, if expression

1

is false, expression

2

is never evaluated.

expression

1

corexpression

2

is the boolean or of expression

1

and expression

2

, but expression

2

is not

evaluated unless expression

1

is false. For both cand and cor, expression

1

and expression

2

must have type bool.

Because of the conditional expression evaluation involved, uses of cand

and cor are not equivalent to any procedure invocation.

A.6.11 Precedence

When an expression is not fully parenthesized, the proper nesting of subex-

pressions may be ambiguous. The following precedence rules are used to

resolve such ambiguity. The precedence of each in�x operator is given

356 APPENDIX A. CLU REFERENCE MANUAL

below|note that higher precedence operations are performed �rst and that

pre�x operators always have precedence over in�x operators:

Precedence Operators

5 ��

4 � � = ==

3 + � k

2 < <= = >= > �< �<= �= �>= �>

1 & cand

0 j cor

The order of evaluation for operators of the same precedence is from left

to right, except for ��, which is from right to left. The following examples

illustrate the precedence rules:

Expression Equivalent Form

a+ b==c a + (b==c)

a+ b� c (a + b)� c

a+ b �� c �� d a + (b �� (c �� d))

a = bjc = d (a = b)j(c = d)

�a � b (�a) � b

A.6.12 Up and Down

There are no implicit type conversions in CLU. Two forms of expression

exist for explicit conversions. These are

up (expression)

down (expression)

Up and down may be used only within the body of a cluster operation.

Up changes the type of the expression from the representation type of the

cluster to the abstract type. Down converts the type of the expression

from the abstract type to the representation type. These conversions are

explained further in section A.8.3.

A.6.13 Force

CLU has a single built-in procedure generator called force. Force takes

one type parameter and is written

force [type spec]

The procedure force[T] has type

proctype (any) returns (T) signals (wrong type)

If force[T] is applied to an object that is included in type T, it returns that

object. If force[T] is applied to an object that is not included in type T,

it signals \wrong type."

A.7. STATEMENTS 357

Force is a necessary companion to the type any. The type any allows

programs to pass around objects of arbitrary type. However, to do anything

substantive with an object, one must use the primitive operations of that

object's type. This raises a con
ict with compile-time type checking, since

an operation can be applied only when the arguments are known to be of

the correct types. This con
ict is resolved by using force. Force[T] allows

a program to check, at runtime, that a particular object is actually of type

T. If this check succeeds, the object can be used in all the ways appropriate

for objects of type T.

For example, the procedure force[T] allows us to write the following

code:

x: any := 3

y: int := force[int](x)

while the following is illegal because the type of y (int) does not include

the type of the expression x (any):

x: any := 3

y: int := x

A.7 Statements

CLU is a statement-oriented language; that is, statements are executed for

their side e�ects and do not return any values. Most statements are control

statements that permit the programmer to de�ne how control
ows through

the program. The real work is done by the simple statements: assignment

and invocation. Assignment has already been discussed in section A.5.2; the

invocation statement is discussed in the following. Two special statements

that look like assignments but are really invocations are discussed in section

A.7.2.

The syntax of CLU is de�ned to permit a control statement to control

a group of equates, declarations, and statements rather than just a single

statement. Such a group is called a body and has the form

body ::= f equate g

f statement g % statements include declarations

Scope rules for bodies are discussed in section A.4.1. No special terminator

is needed to signify the end of a body; reserved words used in the various

compound statements serve to delimit the bodies. Occasionally it is neces-

sary to indicate explicitly that a group of statements should be treated like

a single statement; this is done by the block statement, discussed in section

A.7.3.

358 APPENDIX A. CLU REFERENCE MANUAL

A.7.1 Invocation Statement

An invocation statement invokes a procedure. Its form is the same as an

invocation expression:

primary ([expression , ...])

The primary must evaluate to a procedure object, and the type of each

expression must be included in the type of the corresponding formal argu-

ment for that procedure. The procedure may or may not return results; if

it does return results, they are discarded.

A.7.2 Update Statements

Two special statements are provided for updating components of records

and arrays. They may also be used with user-de�ned types with the ap-

propriate properties. These statements resemble assignments syntactically,

but they are really invocations.

The element update statement has the form

primary [expression

1

] := expression

2

This form is merely a shorthand for an invocation of a store operation and

is completely equivalent to the invocation statement

T$store(primary, expression

1

; expression

2

)

where T is the type of primary.

The element update statement is not restricted to arrays. The statement

is legal if the corresponding invocation statement is legal. In other words,

T (the type of primary) must provide a procedure operation named store,

which takes three arguments whose types include those of primary; expression

1

,

and expression

2

, respectively.

We recommend that the use of store for user-de�ned types be restricted

to types with arraylike behavior, that is, types whose objects contain mu-

table collections of indexable elements. For example, it might make sense

for an associative memory type to provide a store operation for changing

the value associated with a key.

The component update statement has the form

primary . name := expression

This form is merely a shorthand for an invocation of a set name operation

and is completely equivalent to the invocation statement

T$set name(primary, expression)

where T is the type of primary. For example, if x has type RT= record[�rst:

int, second: real], then

A.7. STATEMENTS 359

x.�rst := 6

is completely equivalent to

RT$set �rst(x, 6)

The component update statement is not restricted to records. The

statement is legal if the corresponding invocation statement is legal. In

other words, T (the type of primary) must provide a procedure operation

called set name, which takes two arguments whose types include the types

of primary and expression, respectively.

We recommend that set operations be provided for user-de�ned types

only if recordlike behavior is desired, that is, only if it is meaningful to

permit selected parts of the abstract object to be modi�ed. In general,

set operations should not perform any substantial computation, except

possibly checking that the arguments satisfy certain constraints.

A.7.3 Begin Statement

The begin statement permits a sequence of statements to be grouped to-

gether into a single statement. Its form is

begin body end

Since the syntax already permits bodies inside control statements, the main

use of the block statement is to group statements together for use with the

except statement (see section A.7.13).

A.7.4 Conditional Statement

The form of the conditional statement is

if expression then body

f elseif expression then body g

[else body]

end

The expressions must be of type bool. They are evaluated successively until

one is found to be true. The body corresponding to the �rst true expression

is executed, and the execution of the if statement then terminates. If none

of the expressions is true, the body in the else clause is executed (if the

else clause exists). The elseif form provides a convenient way to write a

multipath branch.

360 APPENDIX A. CLU REFERENCE MANUAL

A.7.5 While Statement

The while statement has the form

while expression do body end

Its e�ect is repeatedly to execute the body as long as the expression remains

true. The expression must be of type bool. If the value of the expression is

true, the body is executed, and then the entire while statement is executed

again. When the expression evaluates to false, execution of the while

statement terminates.

A.7.6 For Statement

The only way an iterator can be invoked is by use of a for statement. The

iterator produces a sequence of items (where an item is a group of zero or

more objects) one item at a time; the body of the for statement is executed

for each item in the sequence.

The for statement has the form

for [idn , ...] in invocation do body end

or

for [decl , ...] in invocation do body end

The invocation must be an iterator invocation. The idn form uses previ-

ously declared variables to serve as the loop variables, while the decl form

introduces new variables, local to the for statement, for this purpose. In

either case, the type of each variable must include the corresponding yield

type of the invoked iterator.

Execution of the for statement proceeds as follows. First the iterator

is invoked, and it either yields an item or terminates. If the iterator yields

an item, its execution is temporarily suspended, the objects in the item

are assigned to the loop variables, and the body of the for statement is

executed. The next cycle of the loop is begun by resuming execution of the

iterator from its point of suspension. Whenever the iterator terminates,

the entire for statement terminates. If the for statement terminates, this

also terminates the iterator.

A.7.7 Continue Statement

The continue statement has the form

continue

Its e�ect is to terminate execution of the body of the smallest loop

statement in which it appears and to start the next cycle of that loop (if

any).

A.7. STATEMENTS 361

A.7.8 Break Statement

The break statement has the form

break

Its e�ect is to terminate execution of the smallest loop statement in

which it appears.

A.7.9 Tagcase Statement

The tagcase statement is a special statement provided for decomposing

oneof and variant objects; it permits the selection of a body to perform

based on the tag of the object.

The form of the tagcase statement is

tagcase expression

tag arm f tag arm g

[others : body]

end

where

tag arm ::= tag name , ... [(idn: type spec)] : body

The expression must evaluate to a oneof or variant object. The tag of this

object is then matched against the names on the tag arms. When a match

is found, if a declaration (idn: type spec) exists, the value component of

the object is assigned to the local variable idn. The matching body is then

executed; idn is de�ned only in that body. If no match is found, the body

in the others arm is executed.

In a syntactically correct tagcase statement, the following constraints

are satis�ed. The type of the expression must be some oneof or variant

type T. The tags named in the tag arms must be a subset of the tags of T,

and no tag may occur more than once. If all tags of T are present, there is

no others arm; otherwise an others arm must be present. Finally, on any

tag arm containing a declaration (idn: type spec), type spec must equal

(not include) the type speci�ed as corresponding in T to the tag or tags

named in the tag arm.

A.7.10 Return Statement

The form of the return statement is

return [(expression , ...)]

362 APPENDIX A. CLU REFERENCE MANUAL

The return statement terminates execution of the containing procedure or

iterator. If the return statement is in a procedure, the type of each expres-

sion must be included in the corresponding return type of the procedure.

The expressions (if any) are evaluated from left to right, and the objects

obtained become the results of the procedure. If the return statement

occurs in an iterator, no results can be returned.

A.7.11 Yield Statement

Yield statements may occur only in the body of an iterator. The form of

a yield statement is

yield [(expression , ...)]

It has the e�ect of suspending operation of the iterator and returning con-

trol to the invoking for statement. The values obtained by evaluating the

expressions (from left to right) are passed to the for statement to be as-

signed to the corresponding list of identi�ers. The type of each expression

must be included in the corresponding yield type of the iterator. After the

body of the for loop has been executed, execution of the iterator is resumed

at the statement following the yield statement.

A.7.12 Signal Statement

An exception is signaled with a signal statement, which has the form

signal name [(expression , ...)]

A signal statement may appear anywhere in the body of a routine. The

execution of a signal statement begins with evaluation of the expressions

(if any), from left to right, to produce a list of exception results. The

activation of the routine is then terminated. Execution continues in the

caller, as described in section A.7.13.

The exception name must be either one of the exception names listed in

the routine heading or failure. If the corresponding exception speci�cation

in the heading has the form

name(T

1

, ... , T

n

)

there must be exactly n expressions in the signal statement, and the type

of the ith expression must be included in T

i

. If the name is failure, there

must be exactly one expression present, of type string.

A.7. STATEMENTS 363

A.7.13 Except Statement

When a routine activation terminates by signaling an exception, the cor-

responding invocation (the text of the call) is said to raise that exception.

By attaching handlers to statements, the caller can specify the action to be

taken when an exception is raised.

A statement with handlers attached is called an except statement and

has the form

statement except f when handler g

[others handler]

end

where

when handler ::= when name , ... [(decl , ...)] : body

| when name , ... (�) : body

others handler ::= others [(idn : type spec)] : body

Let S be the statement to which the handlers are attached, and let X be

the entire except statement. Each when handler speci�es one or more

exception names and a body. The body is executed if an exception with

one of those names is raised by an invocation in S. All the names listed in

the when handlers must be distinct. The optional others handler is used

to handle all exceptions not explicitly named in the when handlers. Here

S can be any form of statement, even another except statement.

If, during the execution of S, some invocation in S raises an exception

E, control immediately transfers to the closest applicable handler|that is,

the closest handler for E that is attached to a statement containing the

invocation. When execution of the handler is complete, control passes to

the statement following the one to which the handler is attached. Thus if

the closest handler is attached to S, the statement following X is executed

next. If execution of S completes without raising an exception, the attached

handlers are not executed.

An exception raised inside a handler is treated the same as any other

exception: Control passes to the closest handler for that exception. Note

that an exception raised in some handler attached to S cannot be handled

by any handler attached to S; either the exception is handled within the

handler or it is handled by some handler attached to a statement containing

X.

We now consider the forms of handlers in more detail. The form

when name , ... [(decl , ...)] : body

is used to handle exceptions with the given names when the exception re-

sults are of interest. The optional declared variables, which are local to the

364 APPENDIX A. CLU REFERENCE MANUAL

handler, are assigned the exception results before the body is executed. Ev-

ery exception potentially handled by this form must have the same number

of results as there are declared variables, and the types of the results must

equal (not include) the types of the variables. The form

when name , ... (�) : body

handles all exceptions with the given names, regardless of the existence of

exception results; any actual results are discarded. Hence exceptions with

di�ering numbers and types of results can be handled together.

The form

others [(idn : type spec)] : body

is optional and must appear last in a handler list. This form handles any

exception not handled by other handlers in the list. If a variable is declared,

it must be of type string. The variable, which is local to the handler, is

assigned a lowercase string representing the actual exception name; any

results are discarded.

Note that exception results are ignored when matching exceptions to

handlers; only the names of exceptions are used. Thus the following is

illegal, in that int$div signals zero divide without any results, but the closest

handler has a declared variable:

begin

y: int := 0

x: int := 3 / y except when zero divide (z: int): return end

end except when zero divide: return end

An invocation need not be surrounded by except statements that han-

dle all potential exceptions. This policy was adopted because in many cases

the programmer can prove that a particular exception will not arise. For

example, the invocation int$div(x, 7) will never signal zero divide. How-

ever, this policy does lead to the possibility that some invocation may raise

an exception for which there is no handler. To avoid this situation, every

routine body is contained in an implicit except statement of the form

begin routine body end

except when failure (s: string): signal failure(s)

others (s: string): signal failure(\unhandled exception: " k s)

end

Failure exceptions are propagated unchanged; an exception named name

becomes

failure(\unhandled exception: name")

A.7. STATEMENTS 365

A.7.14 Resignal Statement

A resignal statement is a syntactically abbreviated form of exception han-

dling:

statement resignal name , ...

Each name listed must be distinct, and each must be either one of the

condition names listed in the routine heading or failure. The resignal

statement acts like an except statement containing a handler for each

condition named, where each handler simply signals that exception with

exactly the same results. Thus if the resignal clause names an exception

with a speci�cation in the routine heading of the form

name(T

1

, ... , T

n

)

then e�ectively there is a handler of the form

when name (x

1

: T

1

, ... , x

n

: T

n

): signal name(x

1

, ... , x

n

)

As for an explicit handler of this form, every exception potentially han-

dled by this implicit handler must have the same number of results as are

declared in the exception speci�cation, and the types of the results must

equal the types listed in the exception speci�cation.

A.7.15 Exit Statement

A local transfer of control can be e�ected by using an exit statement, which

has the form

exit name [(expression , ...)]

An exit statement is similar to a signal statement, except that where

the signal statement signals an exception to the calling routine, the exit

statement raises the exception directly in the current routine. An exception

raised by an exit statement must be handled explicitly by a containing

except statement with a handler of the form

when name , ... [(decl , ...)] : body

As usual, the types of the expressions in the exit statement must equal

the types of the variables declared in the handler. The handler must be an

explicit one; that is, exits to the implicit handlers of resignal statements

or to the implicit failure handler enclosing a routine body are illegal.

366 APPENDIX A. CLU REFERENCE MANUAL

A.8 Modules

A CLU program consists of a group of modules. Three kinds of modules

are provided, one for each kind of abstraction we have found to be useful

in program construction:

module ::= f equate g procedure

| f equate g iterator

| f equate g cluster

Procedures support procedural abstraction, iterators support control ab-

straction, and clusters support data abstraction.

A module de�nes a new scope. The identi�ers introduced in the equates

(if any) and the identi�er naming the abstraction (the module name) are

local to that scope (and therefore may not be rede�ned in an inner scope).

Abstractions implemented by other modules are referred to by using non-

local identi�ers.

The existence of an externally established meaning for an identi�er does

not preclude a local de�nition for that identi�er. Within a module, any

identi�er may be used in a purely local fashion or in a purely nonlocal

fashion, but no identi�er may be used in both ways.

A.8.1 Procedures

A procedure performs an action on zero or more arguments, and terminates

by returning zero or more results. It may terminate in one of a number of

conditions; one of these is the normal condition, while the others are excep-

tional conditions. Di�ering numbers and types of results may be returned

in the di�erent conditions.

The form of a procedure is

idn = proc [parms] args [returns] [signals] [where]

routine body

end idn

where

args ::= ([decl , ...])

returns ::= returns (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]

routine body ::= f equate g f own var g f statement g

The idn following the end of the procedure must be the same as the idn

naming the procedure. In this section we discuss nonparameterized proce-

dures, in which the parms and where clauses are missing. Parameterized

A.8. MODULES 367

modules are discussed in section A.8.4; own variables are discussed in sec-

tion A.8.5.

The heading of a procedure describes the way in which the procedure

communicates with its caller. The args clause speci�es the number, or-

der, and types of arguments required to invoke the procedure, while the

returns clause speci�es the number, order, and types of results returned

when the procedure terminates normally (by executing a return statement

or reaching the end of its body). A missing returns clause indicates that

no results are returned.

The signals clause names the exceptional conditions in which the pro-

cedure can terminate and speci�es the number, order, and types of result

objects returned in each exception. In addition to the exceptions explicitly

named in the signals clause, any procedure can terminate in the failure

exception. The failure exception returns with one result, a string object.

All names of exceptions in the signals clause must be distinct, and none

can be failure.

A procedure is an object of some procedure type. For a nonparameter-

ized procedure, this type is derived from the procedure heading by removing

the procedure name, rewriting the formal argument declarations with one

idn per decl, deleting the names of formal arguments, and, �nally, replacing

proc by proctype.

As was discussed in section A.5.3, the invocation of a procedure causes

the introduction of the formal variables, and the actual arguments are as-

signed to these variables. Then the procedure body is executed. Execution

terminates when a return statement or a signal statement is executed or

when the textual end of the body is reached. If a procedure that should

return results reaches the textual end of the body, the procedure terminates

in the condition

failure(\no return values")

At termination the result objects, if any, are passed back to the invoker of

the procedure.

A.8.2 Iterators

An iterator computes a sequence of items, one at a time, where each item

is a group of zero or more objects. It has the form

idn = iter [parms] args [yields] [signals] [where]

routine body

end idn

where

yields ::= yields (type spec , ...)

368 APPENDIX A. CLU REFERENCE MANUAL

The idn following the end of the iterator must be the same as the idn

naming the iterator. In this section we discuss nonparameterized iterators,

in which the parms and where clauses are missing. Parameterized modules

are discussed in section A.8.4; own variables are discussed in section A.8.5.

The form of an iterator is very similar to the form of a procedure. There

are only two di�erences:

1. An iterator has a yields clause in its heading in place of the returns

clause of a procedure. The yields clause speci�es the number, order, and

types of objects yielded each time the iterator produces the next item in

the sequence. If zero objects are yielded, the yields clause is omitted.

2. Within the iterator body, the yield statement is used to present the

caller with the next item in the sequence. An iterator terminates in the

same manner as a procedure, but it may not return any results.

An iterator is an object of some iterator type. For a nonparameterized

iterator, this type is derived from the iterator heading by removing the

iterator name, rewriting the formal argument declarations with one idn per

decl, deleting the formal argument names, and, �nally, replacing iter by

itertype.

An iterator can be invoked only by a for statement. The execution of

iterators is described in section A.7.6.

A.8.3 Clusters

A cluster is used to implement a new data type, distinct from any other

built-in or user-de�ned data type. The form is

idn = cluster [parms] is idn , ... [where]

cluster body

end idn

where

cluster body ::= f equate g rep = type spec f equate g

f own var g

routine f routine g

routine ::= procedure | iterator

The idn following the end of the cluster must be the same as the idn

naming the cluster. In this section we discuss nonparameterized clusters,

in which the parms and where clauses are missing. Parameterized modules

are discussed in section A.8.4; own variables are discussed in section A.8.5.

The primitive operations are named by the list of idns following the

reserved word is. All of the idns in this list must be distinct.

A.8. MODULES 369

To de�ne a new data type, it is necessary to choose a concrete repre-

sentation for the objects of the type. The special equate

rep = type spec

within the cluster body identi�es type spec as the concrete representation.

Within the cluster, rep may be used as an abbreviation for type spec.

The identi�er naming the cluster is available for use in the cluster body.

Use of this identi�er within the cluster body permits the de�nition of re-

cursive types.

In addition to specifying the representation of objects, the cluster must

implement the primitive operations of the type. The operations may be

either procedures or iterators. Most of the routines in the cluster body

de�ne the primitive operations (those whose names are listed in the cluster

heading). Any additional routines are hidden; they are private to the cluster

and may not be named directly by users of the abstract type. All the

routines must be named by distinct identi�ers; the scope of these identi�ers

is the entire cluster.

Outside the cluster, the type's objects may only be treated abstractly

(that is, manipulated by using the primitive operations). To implement

the operations, however, it is usually necessary to manipulate the objects

in terms of their concrete representation. It is also convenient sometimes

to manipulate the objects abstractly. Therefore, inside the cluster it is

possible to view the type's objects either abstractly or in terms of their

representation. The syntax is de�ned to specify unambiguously, for each

variable that refers to one of the type's objects, which view is being taken.

Thus inside a cluster named T, a declaration

v: T

indicates that the object referred to by v is to be treated abstractly, while

a declaration

w: rep

indicates that the object referred to by w is to be treated concretely. Two

primitives, up and down, are available for converting between these two

points of view. The use of up permits a type rep object to be viewed

abstractly, while down permits an abstract object to be viewed concretely.

For example, the following two assignments are legal for the declarations

just given:

v := up(w)

w := down(v)

Only routines inside a cluster may use up and down. Note that up and

down are used merely to inform the compiler that the object is going to

be viewed abstractly or concretely, respectively.

370 APPENDIX A. CLU REFERENCE MANUAL

A common place where the view of an object changes is at the interface

to one of the type's operations. The user, of course, views the object

abstractly, while inside the operation the object is viewed concretely. To

facilitate this use, a special type speci�cation, cvt, is provided. The use

of cvt is restricted to the args, returns, yields, and signals clauses of

routines inside a cluster, and it may be used at the top level only (for

example, array[cvt] is illegal). When used inside the args clause, it means

that down is applied implicitly to the argument object when it is assigned

to the formal argument variable. When cvt is used in the returns, yields,

or signals clause, it means that up is applied implicitly to the result object

as it is returned (or yielded) to the caller. Thus cvt means abstract outside,

concrete inside; when constructing the type of a routine, cvt is equivalent

to the abstract type, but when type checking the body of a routine, cvt is

equivalent to the representation type.

The cvt form does not introduce any new ability over what is provided

by up and down. It is merely a shorthand for a common case.

The type of each routine is derived from its heading in the usual manner,

except that each occurrence of cvt is replaced by the abstract type.

Inside the cluster, it is not necessary to use the compound form (type spec$op name)

for naming locally de�ned routines. Furthermore, the compound form can-

not be used for invoking hidden routines.

A.8.4 Parameters

Procedures, iterators, and clusters can all be parameterized. Parameteriza-

tion permits a set of related abstractions to be de�ned by a single module.

Recall that in each module heading there is an optional parms clause and

an optional where clause. The presence of the parms clause indicates that

the module is parameterized; the where clause states certain constraints

on permissible actual values for the parameters.

The form of the parms clause is

[parm , ...]

where

parm ::= idn , ... : type spec

| idn , ... : type

Each parameter is declared like an argument. However, only the follow-

ing types of parameters are legal: int, real, bool, char, string, null, and

type. Parameters are limited to these types because the actual values for

parameters are required to be constants that can be computed at compile

time. This requirement ensures that all types are known at compile time

and permits complete compile-time type checking.

A.8. MODULES 371

In a parameterized module, the scope rules permit the parameters to

be used throughout the remainder of the module. Type parameters can

be used freely as type speci�cations, and all other parameters can be used

freely as expressions. For example, type parameters can be used in de�ning

the types of arguments and results:

p = proc [t: type] (x: t) returns (t)

To use a parameterized module, we must �rst instantiate it, that is,

provide actual, constant values for the parameters. (The exact forms of

such constants are discussed in section A.4.3.) The result of instantiation

is a procedure, iterator, or type (where the parameterized module was a

procedure, iterator, or cluster, respectively) that may be used just like a

nonparameterized module of the same kind. For each distinct instantiations

(that is, for each distinct list of actual parameters), a distinct procedure,

iterator, or type is produced.

The meaning of a parameterized module is most easily understood in

terms of rewriting. When the module is instantiated, the actual parameter

values are substituted for the formal parameters throughout the module,

and the parms clause and where clause are deleted. The resulting module

is a regular (nonparameterized) module. In the case of a cluster, some of

the operations may have additional parameters; further rewriting will be

performed when these operations are used.

In the case of a type parameter, constraints on permissible actual types

can be given in thewhere clause. Thewhere clause lists a set of operations

that the actual type is required to have and also speci�es the type of each

required operation. Thewhere clause constrains the parameterized module

as well; the only primitive operations of the type parameter that can be

used are those listed in the where clause.

The form of the where clause is

where ::= where restriction , ...

where

restriction ::= idn has oper decl , ...

| idn in type set

oper decl ::= op name , ... : type spec

op name ::= name [[constant , ...]]

type set ::= f idn j idn has oper decl , ... f equate g g

| idn

There are two forms of restrictions. In both forms, the initial idn must

be a type parameter. The has form lists the set of required operations

directly, by means of oper decls. The type spec in each oper decl must name

a routine type. Note that if some of the type's operations are parameterized,

372 APPENDIX A. CLU REFERENCE MANUAL

particular instantiations of those operations must be given. The in form

requires that the actual type be a member of a type set, a set of types

having the required operations. The two identi�ers in the type set must

match, and the notation is read like set notation; an example is

ft j t has f: . . . g

which means \the set of all types t such that t has f . . . :" The scope of the

identi�er is the type set.

The in form is useful because an abbreviation can be given for a type set

via an equate. If it is helpful to introduce some abbreviations in de�ning

the type set, these are given in the optional equates within the type set.

The scope of these equates is the type set.

A routine in a parameterized cluster may have a where clause in its

heading and can place further constraints on the cluster parameters. For

example, any type is permissible for the array element type, but the array

similar operation requires that the element type have a similar operation.

This means that array[T] exists for any type T, but array[T]$similar exists

only when T$similar exists. Note that a routine need not include in its

where clause any of the restrictions included in the cluster where clause.

A.8.5 Own Variables

Occasionally it is desirable to have a module that retains information inter-

nally between invocations. Without such an ability, the information would

have to be either reconstructed at every invocation, which can be expensive

(and may even be impossible if the information depends on previous invo-

cations), or passed in through arguments, which is undesirable because the

information is then subject to uncontrolled modi�cation in other modules.

Procedures, iterators, and clusters can all retain information through

the use of own variables. An own variable is similar to a normal variable,

except that it exists for the life of the program, rather than being bound

to the life of any particular routine activation. Syntactically, own variable

declarations must appear immediately after the equates in a routine or

cluster body; they cannot appear in bodies nested within statements. Own

variable declarations have the form

own var ::= own decl

| own idn : type spec := expression

| own decl , ... := invocation

Note that initialization is optional.

Own variables are created when a program begins execution, and they

always start out uninitialized. The own variables of a routine (including

cluster operations) are initialized in textual order as part of the �rst in-

vocation of that routine, before any statements in the body of the routine

A.8. MODULES 373

C = cluster [t: type] is . . .

...

own x: int := init(. . .)

P = proc (. . .)

own y: ...

...

end P

Q = proc [i: int] (. . .)

own z: ...

...

end Q

end C

Figure 1.1 Own variables.

are executed. Cluster own variables are initialized in textual order as part

of the �rst invocation of the �rst cluster operation to be invoked (even if

the operation does not use the own variables). Cluster own variables are

initialized before any operation own variables are initialized.

Aside from the placement of their declarations, the time of their initial-

ization, and their lifetime, own variables act just like normal variables and

can be used in all the same places. As for normal variables, attempts to

use uninitialized own variables (if not detected at compile time) cause the

runtime exception

failure(\uninitialized variable")

Own variable declarations in di�erent modules always refer to distinct

own variables, and distinct executions of programs never share own vari-

ables (even if the same module is used in several programs). Furthermore,

own variable declarations within a parameterized module produce distinct

own variables for each instantiation of the module. For a given instantia-

tion of a parameterized cluster, all instantiations of the type's operations

share the same set of cluster own variables, but distinct instantiations of

parameterized operations have distinct routine own variables. For example,

in the cluster in �gure 1.1 there is a distinct x and y for every type t, and

a distinct z for every type-integer pair (t, i).

Own variable declarations cannot be enclosed by an except statement,

so care must be exercised when writing initialization expressions. If an

exception is raised by an initialization expression, it will be treated as

an exception raised, but not handled, in the body of the routine whose

invocation caused the initialization to be attempted. This routine will then

signal failure to its caller. In the example cluster just given, if procedure P

were the �rst operation of C[string] to be invoked, causing initialization of

374 APPENDIX A. CLU REFERENCE MANUAL

x to be attempted, then an over
ow exception raised in the initialization

of x would result in P signaling

failure(\unhandled exception: over
ow")

to its caller.

With the introduction of own variables, procedures and iterators become

potentially mutable objects. If the abstract behavior of a routine depends

on its history, this should be stated in its speci�cation. In general, own

variables should not be used to modify the abstract behavior of a module.

A.9 Built-in Types

In this section we describe the built-in types and type classes. Familiarity

with chapter 2 is assumed in this discussion. In de�ning the built-in type

classes, we do not depend on users satisfying any constraints beyond those

that can be checked at compile time (that is, that a type parameter has

an operation with a particular name and signature). This decision leads to

more complicated speci�cations. For example, for the elements iterator for

arrays, we must de�ne the behavior when the loop modi�es the array.

A.9.1 Null

null = data type is copy, equal, similar

Overview

The type null has exactly one, immutable object, represented

by the literal nil. Nil is generally used as a place holder in type

de�nitions using oneofs or variants.

Operations

copy = proc (n: null) returns (null)

e�ects Returns nil.

equal = proc (n1, n2: null) returns (bool)

e�ects Returns true.

similar = proc (n1, n2: null) returns (bool)

e�ects Returns true.

end null

A.9.2 Booleans

bool = data type is and, or, not, equal, similar, copy

Overview

A.9. BUILT-IN TYPES 375

The two immutable objects of type bool, with literals true and

false, represent logical truth values.

Operations

and = proc (b1, b2: bool) returns (bool)

e�ects Returns the logical and of b1 and b2.

or = proc (b1, b2: bool) returns (bool)

e�ects Returns the logical or of b1 and b2.

not = proc (b: bool) returns (bool)

e�ects Returns the logical negation of b.

equal = proc (b1, b2: bool) returns (bool)

similar = proc (b1, b2: bool) returns (bool)

e�ects Returns true if b1 and b2 are both true or both false;

otherwise returns false.

copy = proc (b: bool) returns (bool)

e�ects If b is true returns true; otherwise returns false.

end bool

A.9.3 Integers

int = data type is add, sub, mul, minus, div, mod, power, abs, max,

min, lt, le, ge, gt, equal, similar, copy, from to by, from to,

parse, unparse

Overview

Objects of type int are immutable and are intended to model

a subrange of the mathematical integers. The exact range is

not part of the language de�nition and can vary somewhat

from implementation to implementation. Each implementation

is constrained to provide a closed interval [int min, int max],

with int min < 0 and int max � char top (the number of

characters|see section A.9.5). An over
ow exception is sig-

naled by an operation if the result would lie outside this inter-

val.

Integer literals are written as a sequence of one or more decimal

digits.

Operations

add = proc (x, y: int) returns (int) signals (over
ow)

sub = proc (x, y: int) returns (int) signals (over
ow)

mul = proc (x, y: int) returns (int) signals (over
ow)

376 APPENDIX A. CLU REFERENCE MANUAL

e�ects These are the standard integer addition, subtraction, and

multiplication operations. They signal over
ow if the result

would lie outside the represented interval.

minus = proc (x: int) returns (int) signals (over
ow)

e�ects Returns the negative of x; signals over
ow if the result

would lie outside the represented interval.

div = proc (x, y: int) returns (int) signals (zero divide, over
ow)

e�ects Signals zero divide if y = 0. Otherwise returns the integer

quotient of dividing x by y; signals over
ow if the result would

lie outside the represented interval.

mod = proc (x, y: int) returns (int) signals (zero divide, over
ow)

e�ects Signals zero divide if y = 0. Otherwise returns the integer

remainder of dividing x by y; signals over
ow if the result would

lie outside the represented interval.

power = proc (x, y: int) returns (int) signals (negative exponent, over
ow)

e�ects Signals negative exponent if y < 0. Otherwise returns x

y

;

signals over
ow if the result would lie outside the represented

interval.

abs = proc (x: int) returns (int) signals (over
ow)

e�ects Returns the absolute value of x; signals over
ow if the

result would lie outside the represented interval.

max = proc (x, y: int) returns (int)

e�ects Returns the larger of x and y.

min = proc (x, y: int) returns (int)

e�ects Returns the smaller of x and y.

lt = proc (x, y: int) returns (bool)

gt = proc (x, y: int) returns (bool)

le = proc (x, y: int) returns (bool)

ge = proc (x, y: int) returns (bool)

equal = proc (x, y: int) returns (bool)

e�ects These are the standard ordering relations.

similar = proc (x, y: int) returns (bool)

e�ects Returns (x = y).

copy = proc (x: int) returns (y: int)

e�ects Returns y such that x = y.

from to by = iter (from, to, by: int) yields (int)

A.9. BUILT-IN TYPES 377

e�ects Yields the integers from from to to, incrementing by by

each time, that is, yields from, from+by, . . . , from + n � by ,

where n is the largest positive integer such that from+n �by �

to. If by = 0, then yields from inde�nitely. Yields nothing if

from > to and by > 0, or if from < to and by < 0.

from to = iter (from, to: int) yields (int)

e�ects Identical to from to by(from, to, 1).

parse = proc (s: string) returns (int) signals (bad format, over
ow)

e�ects s must be an integer literal, with an optional leading plus

or minus sign; if s is not of this form, signals bad format. Oth-

erwise returns the integer corresponding to s; signals over
ow

if the result would be outside of the represented interval.

unparse = proc (x: int) returns (string)

e�ects Produces the string corresponding to the integer value of

x, preceded by a minus sign if x < 0. Leading zeros are sup-

pressed, and there is no leading plus sign for positive integers.

end int

A.9.4 Reals

real = data type is add, sub, mul, minus, div, power, abs, max, min,

exponent, mantissa, i2r, r2i, trunc, parse, unparse, lt, le, ge,

gt, equal, similar, copy

Overview

378 APPENDIX A. CLU REFERENCE MANUAL

The type real models a subset of the mathematical real num-

bers. Reals are immutable and are written as a mantissa with

an optional exponent. A mantissa is either a sequence of one

or more decimal digits or two sequences (one of which may be

empty) joined by a period. The mantissa must contain at least

one digit. An exponent is E or e, optionally followed by +

or �, followed by one or more decimal digits. An exponent is

required if the mantissa does not contain a period. As is usual,

mEx = m � 10

x

: Examples of real literals are:

ch3.14 ch3.14E0 ch314e�2 ch.0314E+2

ch3. ch.14

Each implementation represents numbers in

chD = f�real max;�real ming[f0g [freal min; real maxg

where

ch0 < real min < 1 < real max

Numbers in D are approximated by the implementation with

precision p such that

8r 2 D Approx(r) 2 Real

8r 2 Real Approx(r) = r

8r 2 D� f0g j(Approx(r)� r)=rj < 10

1�p

8r; s 2 D r � s) Approx(r) � Approx(s)

8r 2 D Approx(�r) = �Approx(r)

We de�ne

Max width and Exp width to be the smallest integers such that

every nonzero element of real can be represented in \standard"

form (exactly one digit, not zero, before the decimal point) with

no more than Max width digits of mantissa and no more than

Exp width digits of exponent.

Real operations signal an exception if the result of a computa-

tion lies outside of D; over
ow occurs if the magnitude exceeds

real max, and under
ow occurs if the magnitude is less than

real min.

Operations

add = proc (x, y: real) returns (real) signals (over
ow, under
ow)

e�ects Computes the sum z of x and y; signals over
ow or under-

ow if z is outside of D, as explained earlier. Otherwise returns

approx(z) such that

ch (x; y � 0 _ x; y � 0)) add(x; y) = Approx(x + y)

ch add(x; y) = (1 + �)(x + y) chj�j < 10

1�p

ch add(x; 0) = x

ch add(x; y) = add(y; x)

ch x � x

0

) add(x; y) � add(x

0

; y)

sub = proc (x, y: real) returns (real) signals (over
ow, under
ow)

A.9. BUILT-IN TYPES 379

e�ects Computes x � y ; the result is identical to add(x, �y).

minus = proc (x: real) returns (real)

e�ects Returns �x .

mul = proc (x, y: real) returns (real) signals (over
ow, under
ow)

e�ects Returns approx (x �y); signals over
ow or under
ow if x �y

is outside of D.

div = proc (x, y: real) returns (real)

signals (zero divide, over
ow, under
ow)

e�ects If y = 0, signals zero divide. Otherwise returns

approx (x=y); signals over
ow or under
ow if x=y is outside

of D.

power = proc (x, y: real) returns (real)

signals (zero divide, complex result, over
ow, under
ow)

e�ects If x = 0 and y < 0, signals zero divide. If x < 0 and

y is nonintegral, signals complex result. Otherwise returns an

approximation to x

y

; signals over
ow or under
ow if x

y

is

outside of D.

abs = proc (x: real) returns (real)

e�ects Returns the absolute value of x.

max = proc (x, y: real) returns (real)

e�ects Returns the larger of x and y.

min = proc (x, y: real) returns (real)

e�ects Returns the smaller of x and y.

exponent = proc (x: real) returns (int) signals (unde�ned)

e�ects If x = 0, signals unde�ned. Otherwise returns the exponent

that would be used in representing x as a literal in standard

form, that is, returns

chmax(fijabs(x) � 10

i

g)

mantissa = proc (x: real) returns (real)

e�ects Returns the mantissa of x when represented in standard

form, that is, returns approx (x=10

e

), where e = exponent (x).

If x = 0.0, returns 0.0.

i2r = proc (i: int) returns (real) signals (over
ow)

e�ects Returns approx(i); signals over
ow if i is not in D.

r2i = proc (x: real) returns (int) signals (over
ow)

e�ects Rounds x to the nearest integer and toward zero in case of

a tie. Signals over
ow if the result lies outside the represented

range of integers.

380 APPENDIX A. CLU REFERENCE MANUAL

trunc = proc (x: real) returns (int) signals (over
ow)

e�ects Truncates x toward zero; signals over
ow if the result

would be outside the represented range of integers.

parse = proc (s: string) returns (real) signals (bad format, over
ow, under
ow)

e�ects Computes the exact value z corresponding to a real or

integer literal and returns approx(z). smust be a real or integer

literal with an optional leading plus or minus sign; otherwise

signals bad format. Signals under
ow or over
ow if z is not in

D.

unparse = proc (x: real) returns (string)

e�ectsReturns a real literal such that parse(unparse(x)) = x. The

general form of the literal is

ch [�] i �eld.f �eld [e � x �eld]

Leading zeros in i �eld and trailing zeros in f �eld are sup-

pressed. If x is integral and within the range of CLU integers,

then f �eld and the exponent are not present. If x can be rep-

resented by a mantissa of no more than Max width digits and

no exponent (that is, if �1 � exponent (arg1) < Max width),

then the exponent is not present. Otherwise the literal is in

standard form, with Exp width digits of exponent.

lt = proc (x, y: real) returns (bool)

le = proc (x, y: real) returns (bool)

ge = proc (x, y: real) returns (bool)

gt = proc (x, y: real) returns (bool)

equal = proc (x, y: real) returns (bool)

e�ects The standard ordering relations.

similar = proc (x, y: real) returns (bool)

e�ects Returns (x = y).

copy = proc (x: real) returns (real)

e�ects Returns y such that x = y.

end real

A.9.5 Characters

char = data type is i2c, c2i, lt, le, ge, gt, equal, similar, copy

Overview

A.9. BUILT-IN TYPES 381

Type char provides the alphabet for text manipulation. Char-

acters are immutable and form an ordered set. Every imple-

mentation must provide at least 128, but no more than 512,

characters; the �rst 128 characters are the ASCII characters in

their standard order.

Operations i2c and c2i convert between ints and chars. The

smallest character corresponds to zero, and characters are num-

bered sequentially up to char top, the integer corresponding to

the largest character. This numbering determines the ordering

of the characters.

Printing ASCII characters (octal 40 through octal 176), other

than single quote or backslash, can be written as that character

enclosed in single quotes. Any character can be written by

enclosing one of the following escape sequences in single quotes:

escape sequence character

n ' ' (single quote)

n \ ' (double quote)

nn n (backslash)

n n NL (newline)

n t HT (horizontal tab)

n p FF (form feed, newpage)

n b BS (backspace)

n r CR (carriage return)

n v VT (vertical tab)

n *** speci�ed by octal value (exactly three octal digits)

The escape sequences may also be written using upper case

letters. Examples of character literals are

ch`7' ch`a' ch\ " ch`n"'

ch`n'' ch`nB' ch`n177'

Operations

i2c = proc (x: int) returns (char) signals (illegal char)

e�ects Returns the character corresponding the x; signals ille-

gal argument if x is not in the range [0, char top].

c2i = proc (c: char) returns (int)

e�ects Returns the integer corresponding to c.

lt = proc (c1, c2: char) returns (bool)

le = proc (c1, c2: char) returns (bool)

ge = proc (c1, c2: char) returns (bool)

gt = proc (c1, c2: char) returns (bool)

equal = proc (c1, c2: char) returns (bool)

e�ects These are the standard ordering relations, where the order

is consistent with the numbering of characters.

382 APPENDIX A. CLU REFERENCE MANUAL

similar = proc (c1, c2: char) returns (bool)

e�ects Returns (c1 = c2).

copy = proc (c1: char) returns (c2: char)

e�ects Returns c2 such that c1 = c2.

end char

A.9.6 Strings

string = data type is size, empty, concat, append, fetch, rest, indexs,

indexc, substr, lt, le, ge, gt, equal, similar, copy, c2s, s2ac,

ac2s, s2sc, sc2s, chars

Overview

Type string is used for representing text. A string is an im-

mutable sequence of zero or more characters. The characters of

a string are indexed sequentially starting from one. Strings are

lexicographically ordered based on the ordering for characters.

A string is written as a sequence of zero or more character rep-

resentations enclosed in double quotes. Within a string literal,

a printing ASCII character other than double quote or back-

slash is represented by itself. Any character can be represented

by using the escape sequences listed for characters. Examples

of string literals are

\ItemntCost" \altmode (n033) = nn033" \ " \ "

If the result of a string operation would be a string containing

more than int max characters, the operation signals failure.

Operations

size = proc (s: string) returns (int)

e�ects Returns the number of characters in s.

empty = proc (s: string) returns (bool)

e�ects Returns true if s is empty (contains no characters);

otherwise returns false.

concat = proc (s1, s2: string) returns (string)

e�ects Returns a new string containing the characters of s1 fol-

lowed by the characters of s2. Signals failure if the new string

would contain more than int max characters.

append = proc (s: string, c: char) returns (string)

e�ects Returns a new string containing the characters of s fol-

lowed by c. Signals failure if the new string would contain

more than int max characters.

fetch = proc (s: string, i: int) returns (char) signals (bounds)

A.9. BUILT-IN TYPES 383

e�ects Signals bounds if i < 0 or i > size(s); otherwise returns

the ith character of s.

rest = proc (s: string, i: int) returns (string) signals (bounds)

e�ects Signals bounds if i < 0 or i > size(s) + 1 ;

otherwise returns a new string containing the characters

s[i]; s[i + 1]; . . . ; s[size(s)]. Note that if i = size(s)+1, rest

returns the empty string.

indexs = proc (s1, s2: string) returns (int)

e�ects If s1 occurs as a substring in s2, returns the least index at

which s1 occurs. Returns 0 if s1 does not occur in s2, and 1 if

s1 is the empty string. For example,

chindexs(\bc", \abcbc") = 2

chindexs(\", \abcde") = 1

indexc = proc (c: char, s: string) returns (int)

e�ects If c occurs in s, returns the least index at which c occurs;

returns 0 if c does not occur in s.

substr = proc (s: string, at, cnt: int) returns (string)

signals (bounds, negative size)

e�ects If cnt < 0, signals negative size. If at < 1 or at >

size(s) + 1, signals bounds. Otherwise returns a new string

containing the characters s[at]; s[at + 1]; . . .; the new string

contains min(cnt ; size � at + 1) characters. For example,

chsubstr (\abcdef", 2, 3) = \bcd"

chsubstr (\abcdef", 2, 7) = \bcdef"

chsubstr (\abcdef", 7, 1) = \"

Note that if min(cnt ; size � at + 1) = 0, substr returns the

empty string.

lt = proc (s1, s2: string) returns (bool)

le = proc (s1, s2: string) returns (bool)

ge = proc (s1, s2: string) returns (bool)

gt = proc (s1, s2: string) returns (bool)

equal = proc (s1, s2: string) returns (bool)

e�ects These are the usual lexicographic ordering relations on

strings, based on the ordering of characters. For example,

ch\abc" < \aca"

ch\abc" < \abca"

similar = proc (s1, s2: string) returns (bool)

e�ects Returns true if s1 = s2; otherwise returns false.

copy = proc (s1: string) returns (s2: string)

e�ects Returns s2 such that s1 = s2.

384 APPENDIX A. CLU REFERENCE MANUAL

c2s = proc (c: char) returns (string)

e�ects Returns a string containing c as its only character.

s2ac = proc (s: string) returns (array[char])

e�ects Stores the characters of s as elements of a new array of

characters, a. The low bound of the array is 1, the size is

size(s), and the ith element of the array is the ith character of

s, for 1 � i � size(s).

ac2s = proc (a: array[char]) returns (string)

e�ects Does the inverse of s2ac. The result is a string with char-

acters in the same order as in a. That is, the ith character of

the string is the (i + low(a) � 1)th element of a.

s2sc = proc (s: string) returns (sequence[char])

e�ects Transforms a string into a sequence of characters. The

size of the sequence is size(s). The ith element of the sequence

is the ith character of s.

sc2s = proc (s: sequence[char]) returns (string)

e�ects Does the inverse of s2sc. The result is a string with char-

acters in the same order as in s. That is, the ith character of

the string is the ith element of s.

chars = iter (s: string) yields (char)

e�ects Yields, in order, each character of s.

end string

A.9.7 Any

A type speci�cation is used to restrict the class of objects that a variable

can denote, a procedure or iterator can take as arguments, a procedure

can return, and so forth. There are times when no restrictions are desired,

when any object is acceptable. At such times the type speci�cation any is

used. For example, one might wish to implement a table mapping strings

to arbitrary objects, with the intention that di�erent strings should map

to objects of di�erent types. The lookup operation, used to get the object

corresponding to a string, would have its result declared to be of type any.

The type any is the union of all possible types. Every object is of type

any, as well as being of some base type. The type any has no operations;

however, the base type of an object can be tested at runtime (see section

A.6.13).

A.9.8 Arrays

array = data type [t: type] is create, new, predict, �ll, low, high, size,

empty, set low, trim, fetch, bottom, top, store, addh, addl,

A.9. BUILT-IN TYPES 385

remh, reml, elements, indexes, equal, similar, similar1, copy,

copy1, �ll copy

Overview

Arrays are one-dimensional mutable objects that can grow and

shrink dynamically. Each array has a low bound and a se-

quence of elements that are indexed sequentially, starting from

the low bound. All elements of an array are of the same type.

Arrays can be created by calling array operations create, new,

�ll, �ll copy, and predict. They can also be created by means of

a special constructor form that speci�es the array low bound,

and an arbitrary number of initial elements. For example,

charray[int]$[5: 1, 2, 3, 4]

creates an integer array with low bound 5 and four elements.

The low bound can be omitted if it is 1; for example,

charray[string]$[\a", \b", \c"]

creates a three-element array with low bound 1. Array con-

structors are discussed further in section A.6.8.

Operations low, high, and size return the current low and high

bounds and size of the array. For array a, size(a) is the number

of elements in a, and high(a) = low(a) + size(a) � 1.

For any index i between the low and high bound of an array,

there is a de�ned element a[i]. Any operation call that receives

as an index an integer outside the de�ned range terminates

with a bounds exception. Any call that would lead to an array

whose low or high bound or size is outside the de�ned range of

integers terminates with the failure exception.

Operations similar, similar1, copy, and �ll copy require that

the element type t provide certain operations. No constraints

are assumed on the behavior of these t operations; the behavior

of the array operations is de�ned even if the t operation behaves

strangely (for example, modi�es the array being copied).

Operations

create = proc (lb: int) returns (array[t])

e�ects Returns a new, empty array with low bound lb.

new = proc () returns (array[t])

e�ects Returns a new, empty array with low bound 1.

predict = proc (lb, cnt: int) returns (array[t])

386 APPENDIX A. CLU REFERENCE MANUAL

e�ects Returns a new, empty array with low bound lb. Argument

cnt is a prediction of how many addhs or addls are likely to be

performed on this new array. If cnt > 0, addhs are expected;

otherwise addls are expected. These operations may execute

faster than if the array had been produced by calling create.

�ll = proc (lb, cnt: int, elem: t) returns (array[t]) signals (negative size)

e�ects If cnt < 0, signals negative size. Returns a new array with

low bound lb and size cnt, and with elem as each element; if this

new array would have high bound < int min or > int max ,

signals failure.

low = proc (a: array[t]) returns (int)

e�ects Returns the low bound of a.

high = proc (a: array[t]) returns (int)

e�ects Returns the high bound of a.

size = proc (a: array[t]) returns (int)

e�ects Returns a count of the number of elements of a.

empty = proc (a: array[t]) returns (bool)

e�ects Returns true if a contains no elements; otherwise returns false.

set low = proc (a: array[t], lb: int)

modi�es a

e�ectsModi�es the low and high bounds of a; the new low bound

of a is lb and the new high bound is high(a

pre

�lb+low(a

pre

)). If

the new high bound is outside the represented range of integers,

signals failure and does not modify a.

trim = proc (a: array[t], lb, cnt: int) signals (bounds, negative size)

modi�es a

e�ects If lb < low(a) or lb > high(a) + 1, signals bounds. If

cnt < 0, signals negative size. Otherwise modi�es a by remov-

ing all elements with index < lb or greater than or equal to

lb + cnt ; the new low bound is lb. For example, if a = ar-

ray[int]$[1,2,3,4,5], then

trim(a, 2, 2) results in a having value [2: 2, 3]

trim(a, 4, 3) results in a having value [4: 4, 5]

fetch = proc (a: array[t], i: int) returns (t) signals (bounds)

e�ects If i < low(a) or i > high(a), signals bounds; otherwise

returns the element of a with index i.

store = proc (a: array[t], i: int, elem: t) signals (bounds)

modi�es a.

e�ects If i < low(a) or i > high(a), signals bounds; otherwise

makes elem the element of a with index i.

A.9. BUILT-IN TYPES 387

bottom = proc (a: array[t]) returns (t) signals (bounds)

e�ects If a is empty, signals bounds; otherwise returns a[low(a)].

top = proc (a: array[t]) returns (t) signals (bounds)

e�ects If a is empty, signals bounds; otherwise returns a[high(a)].

addh = proc (a: array[t], elem: t)

modi�es a.

e�ects If extending a on the high end causes the high bound or

size of a to be outside the de�ned range of integers, signals

failure. Otherwise extends a by 1 in the high direction and

stores elem as the new element.

addl = proc (a: array[t], elem: t) signals (over
ow)

modi�es a.

e�ects If extending a on the low end causes the low bound or size

of a to be outside the de�ned range of integers, signals failure.

Otherwise extends a by 1 in the low direction and stores elem

as the new element.

remh = proc (a: array[t]) returns (t) signals (bounds)

modi�es a.

e�ects If a is empty, signals bounds. Otherwise shrinks a by re-

moving its high element and returning the removed element.

reml = proc (a: array[t]) returns (t) signals (bounds)

modi�es a.

e�ects If a is empty, signals bounds. Otherwise shrinks a by re-

moving its low element and returning the removed element.

elements = iter (a: array[t]) yields (t)

e�ects The e�ect is equivalent to the following body:

for i: int in int$from to(array[t]$low(a), array[t]$high(a))

do

yield (a[i])

end

Note that if a is not modi�ed by the loop body, the e�ect is to

yield the elements of a, each exactly once, from the low bound

to the high bound.

indexes = iter (a: array[t]) yields (int)

e�ects Yields the indexes of a from the low bound of a

pre

to the

high bound of a

pre

. Note that indexes is una�ected by any

modi�cations done by the loop body.

equal = proc (a1, a2: array[t]) returns (bool)

388 APPENDIX A. CLU REFERENCE MANUAL

e�ects Returns true if a1 and a2 refer to the same array object;

otherwise returns false.

similar = proc (a1, a2: array[t]) returns (bool)

requires t has operation

similar: proctype (t, t) returns (bool)

e�ects Returns true if a1 and a2 have the same low and high

bounds and if their elements are pairwise similar as deter-

mined by t$similar. This operation is equivalent to the fol-

lowing body:

at = array[t]

if at$low(a) �= at$low(a2) cor at$size(a1) �= at$size(a2)

then return (false)

end

for i: int in at$indexes(a1) do

if �t$similar(a1[i], a2[i]) then return (false) end

end

return (true)

similar1 = proc (a1, a2: array[t]) returns (bool)

requires t has operation

equal: proctype (t, t) returns (bool)

e�ects Returns true if a1 and a2 have the same low and high

bounds and if their elements are pairwise equal as determined

by t$equal. This operation works the same way as similar,

except that t$equal is used instead of t$similar.

copy = proc (a: array[t]) returns (b: array[t])

requires t has operation

copy: proctype (t) returns (t)

e�ects Returns a new array b with the same low and high bounds

as a and such that each element b[i] contains t$copy(a[i]). This

operation is equivalent to the following body:

b := array[t]$copy1(a)

for i: int in array[t]$indexes(a) do

b[i] := t$copy(a[i])

end

return (b)

copy1 = proc (a: array[t]) returns (b: array[t])

e�ects Returns a new array b with the same low and high bounds

as a and such that each element b[i] contains the same element

as a[i].

�ll copy = proc (lb, cnt: int, elem: t) returns (array[t])

signals (negative size)

A.9. BUILT-IN TYPES 389

requires t has operation

copy: proctype (t) returns (t)

e�ects The e�ect is like �ll except that elem is copied. If cnt < 0,

signals negative size. Otherwise returns a new array with low

bound lb and size cnt and with each element a distinct copy of

elem, as produced by t$copy; if the new array has high bound

< int min or > int max , signals failure. This operation is

equivalent to the following body:

if cnt < 0 then signal negative size end

x: array[t] := array[t]$predict(lb, cnt)

for j: int in int$from to(1, cnt) do

at$addh(x, t$copy(elem))

end

return (x)

end array

A.9.9 Sequences

sequence = data type [t: type] is new, �ll, size, empty, fetch, bottom,

top, replace, addh, addl, remh, reml, concat, subseq, e2s,

a2s, s2a, elements, indexes, equal, similar, copy, �ll copy

Overview

Sequences are immutable sequences of elements; they always

have low bound 1. The elements of the sequence can be indexed

sequentially from 1 up to the size of the sequence.

Sequences can be created by calling sequence operations and

by means of a special constructor; arguments of the constructor

are simply the elements of the new sequence; for example,

sequence[int]$[3, 7]

creates a two-element sequence containing 3 at index 1 and 7 at

index 2. The special constructor is discussed further in section

A.6.8.

Any operation call that attempts to access a sequence with an

index that is not within the de�ned range terminates with the

bounds exception. Any operation call that would give rise to

a sequence whose size is greater than int max terminates with

the failure exception.

Operations

new = proc () returns (sequence[t])

e�ects Returns the empty sequence.

�ll = proc (cnt: int, elem: t) returns (sequence[t]) signals (negative size)

390 APPENDIX A. CLU REFERENCE MANUAL

e�ects If cnt < 0, signals negative size. Otherwise returns a se-

quence containing cnt elements each of which is elem.

size = proc (s: sequence[t]) returns (int)

e�ects Returns a count of the number of elements in s.

empty = proc (s: sequence[t]) returns (bool)

e�ects Returns true if s contains no elements; otherwise returns false.

fetch = proc (s: sequence[t], i: int) returns (t) signals (bounds)

e�ects If i < 1 or i > size(s), signals bounds. Otherwise returns

the ith element of s.

bottom = proc (s: sequence[t]) returns (t) signals (bounds)

e�ects If s is empty, signals bounds. Otherwise returns s[1].

top = proc (s: sequence[t]) returns (t) signals (bounds)

e�ects If s is empty, signals bounds. Otherwise returns s[size(s)].

replace = proc (s: sequence[t], i: int, elem: t) returns (sequence[t]) signals (bounds)

e�ects If i < 1 or i > high(s), signals bounds. Otherwise returns

a new sequence containing the same elements as s, except that

elem is in the ith position. For example,

replace(sequence[int]$[2,5], 1, 6]) = [6, 5]

addh = proc (s: sequence[t], elem: t) returns (sequence[t])

e�ects Returns a new sequence containing the same elements as

s followed by one additional element, elem. If the resulting

sequence has size > int max , signals failure.

addl = proc (s: sequence[t], elem: t) returns (sequence[t])

e�ects Returns a new sequence containing elem as the �rst ele-

ment followed by the elements of s. If the resulting sequence

has size>int max , signals failure.

remh = proc (s: sequence[t]) returns (sequence[t]) signals (bounds)

e�ects If s is empty, signals bounds. Otherwise returns a new

sequence containing all elements of s except the last one.

reml = proc (s: sequence[t]) returns (sequence[t]) signals (bounds)

e�ects If s is empty, signals bounds. Otherwise returns a new

sequence containing all elements of s except the �rst one.

concat = proc (s1, s2: sequence[t]) returns (sequence[t])

e�ects Returns a new sequence containing the elements of s1 fol-

lowed by the elements of s2. Signals failure if the size of the

new sequence is > int max .

e2s = proc (elem: t) returns (sequence[t])

e�ects Returns a one-element sequence containing elem as its only element.

a2s = proc (a: array[t]) returns (sequence[t])

A.9. BUILT-IN TYPES 391

e�ects Returns a sequence containing the elements of a in the same order as in a.

s2a = proc (s: sequence[t]) returns (array[t])

e�ects Returns a new array with low bound 1 and containing the

elements of s in the same order as in s.

elements = iter (s: sequence[t]) yields (t)

e�ects Yields the elements of s in order.

indexes = iter (s: sequence[t]) yields (int)

e�ects Yields the indexes of s from 1 to size(s).

equal = proc (s1, s2: sequence[t]) returns (bool)

requires t has operation

equal: proctype (t, t) returns (bool)

e�ects Returns true if s1 and s2 have equal values as determined

by t$equal. This operation is equivalent to the following body:

qt = sequence [t]

if qt$size(s1) ~= qt$size(s2) then return (false) end

for i: int in qt$indexes(s1) do

if s1[i] ~= s2[i] then return(false) end

end

return (true)

similar = proc (s1, s2: sequence[t]) returns (bool)

requires t has operation

similar: proctype (t, t) returns (bool)

e�ects Returns true if s1 and s2 have similar values as determined

by t$similar. Similar works in the same way as equal, except

that t$similar is used instead of t$equal.

copy = proc (s: sequence[t]) returns (sequence[t])

requires t has operation

copy: proctype (t) returns (t)

e�ects Returns a new sequence containing as elements copies of

the elements of s. This operation is equivalent to the following

body:

qt = sequence[t]

y: qt := qt$new()

for e: t in qt$elements(s) do

y := qt$addh(y, t$copy(e))

end

return (y)

�ll copy = proc (cnt: int, elem: t) returns (sequence[t])

signals (negative size)

requires t has operation

copy: proctype (t) returns (t)

392 APPENDIX A. CLU REFERENCE MANUAL

e�ects If cnt < 0, signals negative size.

Otherwise returns a new sequence containing cnt elements each

of

which is a copy of elem. This operation is equivalent to the

following body:

qt = sequence[t]

if cnt < 0 then signal negative size end

x: qt := qt$new()

for i: int in int$from to(1, cnt) do

x := qt$addh(x, T$copy(elem))

end

return (x)

end sequence

A.9.10 Records

record = data type [n

1

: t

1

; . . . ; n

k

: t

k

] is get , set , r gets r,

r gets s, equal,similar, similar1, copy, copy1

Overview

A record is a mutable collection of one or more named objects.

The names are called selectors, and the objects are called com-

ponents. Di�erent components may have di�erent types. A

record type speci�cation has the form

record [�eld spec , . . .]

where

�eld spec ::= name, . . . : type spec

Selectors must be unique within a speci�cation, but the order-

ing and grouping of selectors is unimportant. For example, the

following name the same type:

record[last, �rst, middle: string, age: int]

record[last: string, age: int, �rst, middle: string]

A record is created using a record constructor, such as

info $ flast: \Jones", �rst: \John", age: 32, middle: \J."g

(assuming that \info" has been equated to one of the above

type speci�cations; see section A.4.3). An expression must be

given for each selector, but the order and grouping of selec-

tors need not resemble the corresponding type speci�cation.

Record constructors are discussed in section A.6.8.

In the following de�nitions of record operations, let

rt = record[n

1

: t

1

; . . . ; n

k

: t

k

]

Operations

get n

i

= proc (r: rt) returns (t

i

)

A.9. BUILT-IN TYPES 393

e�ects Returns the component of r whose selector is n

i

. There is

a get operation for each selector.

set n = proc (r: rt, e: t

i

)

modi�es r.

e�ects Modi�es r by making the component whose selector is n

i

be e. There is a set operation for each selector.

r gets r = proc (r1, r2: rt)

modi�es r1.

e�ects Sets each component of r1 to be the corresponding

component of r2.

r gets s = proc (r: rt, s: st)

modi�es r.

e�ects Here st is a struct type whose components have the same

selectors and types as rt. Sets each component of r to be the

corresponding component of s.

equal = proc (r1, r2: rt) returns (bool)

e�ects Returns true if r1 and r2 are the very same record object;

otherwise returns false.

similar = proc (r1, r2: rt) returns (bool)

requires Each t

i

has operation

similar: proctype (t

i

; t

i

) returns (bool)

e�ects Returns true if r1 and r2 contain similar objects for each

component as determined by the t

i

$similar operations. The

comparison is done in lexicographic order; if any comparison

returns false, false is returned immediately.

similar1 = proc (r1, r2: rt) returns (bool)

requires Each t

i

has operation

equal: proctype (t

i

; t

i

) returns (bool)

e�ects Returns true if r1 and r2 contain equal objects for each

component as determined by the t

i

$equal operations. The com-

parison is done in lexicographic order; if any comparison re-

turns false, false is returned immediately.

copy1 = proc (r: rt) returns (rt)

e�ects Returns a new record containing the components of r as

its components.

copy = proc (r: rt) returns (rt)

requires Each t

i

has operation

copy: proctype (t

i

) returns (t

i

)

394 APPENDIX A. CLU REFERENCE MANUAL

e�ectsReturns a new record obtained by performing copy1(r) and

then replacing each component with a copy of the correspond-

ing component of r. Copies are obtained by calling the t

i

$copy

operations. Copying is done in lexicographic order.

end record

A.9.11 Structs

struct = data type [n

1

: t

1

; . . . ; n

k

: t

k

] is get , replace , s2r, r2s,

equal, similar, copy

Overview

A struct is an immutable record. A struct type speci�cation

has the form

struct [�eld spec, ...]

where (as for records)

�eld spec ::= name, . . . : type spec

A struct is created using a struct constructor, which syntacti-

cally is identical to a record constructor. Struct constructors

are discussed in section A.6.8.

In the following operation descriptions,

st = struct[n

1

: t

1

; . . . ; n

k

: t

k

]

Operations

get n

i

= proc (s: st) returns (t

i

)

e�ects Returns the component of s whose selector is n

i

. There is

a get operation for each selector.

replace n

i

= proc (s: st, e: t

i

) returns (st)

e�ectsReturns a new struct object whose components are those of

s except that component n

i

is e. There is a replace operation

for each selector.

s2r = proc (s: st) returns (rt)

e�ects Here rt is a record type whose components have the same

selectors and types as st. Returns a new record object whose

components are those of s.

r2s = proc (r: rt) returns (st)

e�ects Here rt is a record type whose components have the same

selectors and types as st. Returns a struct object whose com-

ponents are those of r.

equal = proc (s1, s2: st) returns (bool)

requires Each t

i

has operation

equal: proctype (t

i

; t

i

) returns (bool)

A.9. BUILT-IN TYPES 395

e�ects Returns true if s1 and s2 contain equal objects for each

component as determined by the t

i

$equal operations. The com-

parison is done in lexicographic order; if any comparison re-

turns false, false is returned immediately.

similar = proc (s1, s2: st) returns (bool)

requires Each t

i

has operation

similar: proctype (t

i

; t

i

) returns (bool)

e�ects Returns true if s1 and s2 contain similar objects for each

component as determined by the t

i

$similar operations. The

comparison is done in lexicographic order; if any comparison

returns false, false is returned immediately.

copy = proc (s: st) returns (st)

requires Each t

i

has operation

copy: proctype (t

i

) returns (t

i

)

e�ects Returns a struct containing a copy of each component of s;

copies are obtained by calling the t

i

$copy operations. Copying

is done in lexicographic order.

end struct

A.9.12 Oneofs

oneof = data type [n

1

: t

1

; . . . ; n

k

: t

k

] is make , is , value , o2v, v2o,

equal, similar, copy

Overview

A oneof type is a tagged, discriminated union. A oneof is a

labeled object, to be thought of as \one of" a set of alternatives.

The label is called the tag, and the object is called the value.

A oneof type speci�cation has the form

oneof [�eld spec , . . .]

where (as for records

�eld spec ::= name, ... : type spec

Tags must be unique within a speci�cation, but the ordering

and grouping of tags is unimportant.

Although there are oneof operations for decomposing oneof ob-

jects, they are usually decomposed via the tagcase statement,

which is discussed in section A.7.9.

In the following descriptions of oneof operations,

ot = oneof[n

1

: t

1

; . . . ; n

k

: t

k

]

Operations

make n

i

= proc (e: t

i

) returns (ot)

396 APPENDIX A. CLU REFERENCE MANUAL

e�ects Returns a oneof object with tag n

i

and value e. There is

a make operation for each selector.

is n

i

= proc (o: ot) returns (bool)

e�ects Returns true if the tag of o is n

i

, else returns false. There

is an is operation for each selector.

value n

i

= proc (o: ot) returns (t

i

) signals (wrong tag)

e�ects If the tag of o is n

i

, returns the value of o; otherwise signals

wrong tag. There is a value operation for each selector.

o2v = proc (o: ot) returns (vt)

e�ects Here vt is a variant type with the same selectors and types

as ot. Returns a new variant object with the same tag and

value as o.

v2o = proc (v: vt) returns (ot)

e�ects Here vt is a variant type with the same selectors and types

as ot. Returns a oneof object with the same tag and value as

v.

equal = proc (o1, o2: ot) returns (bool)

requires Each t

i

has operation

equal: proctype (t

i

; t

i

) returns (bool)

e�ects Returns true if o1 and o2 have the same tag and equal

values as determined by the equal operation of their type.

similar = proc (o1, o2: ot) returns (bool)

requires Each t

i

has operation

similar: proctype (t

i

; t

i

) returns (bool)

e�ects Returns true if o1 and o2 have the same tag and similar

values as determined by the similar operation of their type.

copy = proc (o: ot) returns (ot)

requires Each t

i

must have operation

copy: proctype (t

i

) returns (t

i

)

e�ects Returns a oneof object with the same tag as o and con-

taining as a value a copy of o's value; the copy is made using

the copy operation of the value's type.

end oneof

A.9.13 Variants

variant = data type [n

1

: t

1

; . . . ; n

k

: t

k

] is make , change , is ,

value , v gets v, v gets 0, equal, similar, similar1, copy, copy1

Overview

A.9. BUILT-IN TYPES 397

A variant is a mutable oneof. A variant type speci�cation has

the form

variant [�eld spec , . . .]

where (as for records)

�eld spec ::= name, . . . : type spec

Although there are variant operations for decomposing variant

objects, they are usually decomposed via the tagcase state-

ment, which is discussed in section A.7.9.

In the following descriptions of variant operations,

vt = variant[n

1

: t

1

; . . . ; n

k

: t

k

]

Operations

make n

i

= proc (e: t

i

) returns (vt)

e�ects Returns a new variant object with tag n

i

and value e.

There is a make operation for each selector.

change n

i

= proc (v: vt, e: t

i

)

modi�es v.

e�ects Modi�es v to have tag n

i

and value e.

There is a change operation for each selector.

is n

i

= proc (v: vt) returns (bool)

e�ects Returns true if the tag of v is n

i

; otherwise returns false.

There is an is operation for each selector.

value n

i

= proc (v: vt) returns (t

i

) signals (wrong tag)

e�ects If the tag of v is n

i

, returns the value of v; otherwise

signals wrong tag. There is a value operation for each selector.

v gets v = proc (v1, v2: vt)

modi�es v1.

e�ects Modi�es v1 to contain the same tag and value as v2.

v gets o = proc (v: vt, o: ot)

modi�es v.

e�ects Here ot is the oneof type with the same selectors and types

as vt. Modi�es v to contain the same tag and value as o.

equal = proc (v1, v2: vt) returns (bool)

e�ects Returns true if v1 and v2 are the same variant object.

similar = proc (v1, v2: vt) returns (bool)

requires Each t

i

must have operation

similar: proctype (t

i

, t

i

) returns (bool)

e�ects Returns true if v1 and v2 have the same tag and similar

values as determined by the similar operation of their type.

similar1 = proc (v1, v2: vt) returns (bool)

398 APPENDIX A. CLU REFERENCE MANUAL

requires Each t

i

must have operation

equal: proctype (t

i

, t

i

) returns (bool)

e�ects Returns true if v1 and v2 have the same tag and equal

values as determined by the equal operation of their type.

copy = proc (v: vt) returns (vt)

requires Each t

i

must have operation

copy: proctype (t

i

) returns (t

i

)

e�ects Returns a variant object with the same tag as v and con-

taining as a value a copy of v's value; the copy is made using

the copy operation of the value's type.

copy1 = proc (v: vt) returns (vt)

e�ects Returns a new variant object with the same tag as v and

containing v's value as its value.

end variant

A.9.14 Procedure and Iterator Types

Procedures and iterators are objects created by the CLU system. The type

speci�cation for a procedure or iterator contains most of the information

stated in a procedure or iterator heading; a procedure type speci�cation

has the form

proctype ([type spec , . . .]) [returns] [signals]

and an iterator type speci�cation has the form

itertype ([type spec , . . .]) [yields] bn
brack signals]

where

returns ::= returns (type spec , . . .)

yields ::= yields (type spec , . . .)

signals ::= signals (exception , . . .)

exception ::= name [(type spec , . . .)]

The �rst list of

type speci�cations describes the number, types, and order of arguments.

The returns or yields clause gives the number, types, and order of the

objects to be returned or yielded. The signals clause lists the exceptions

raised by the procedure or iterator; for each exception name, the number,

types, and order of the objects to be returned are also given. All names

used in a signals clause must be unique, and none can be failure, which has

a standard meaning in CLU. The ordering of exceptions is not important.

For example, both of the following type speci�cations name the procedure

type for string$substr:

proctype (string, int, int) returns (string)

signals (bounds, negative size)

proctype (string, int, int) returns (string)

signals (negative size, bounds)

A.10. INPUT/OUTPUT 399

In the following operation descriptions, t stands for a proctype or iter-

type.

Operations

equal = proc (x, y: t) returns (bool)

similar = proc (x, y: t) returns (bool)

e�ects These operations return true if and only if x and y are the

same module with the same parameters.

copy = proc (x: t) returns (y: t)

e�ects Returns y such that x = y.

A.10 Input/Output

This section describes a set of standard \library" data types and procedures

for CLU, provided primarily to support I/O. We do not consider this facility

to be part of the language proper, but we feel the need for a set of commonly

used functions that have some meaning on most systems. This facility is

minimal because we wish it to be general, that is, to be implementable, at

least in large part, under almost any operating system. The facility also

provides a framework in which some other operations that are not always

available can be expressed.

Some thought has been given to portability of programs, and possibly

even data, but we expect that programs dealing with all but the simplest

I/O will have to be written very carefully to be portable, and might not be

portable no matter how careful one is.

We shall describe types for naming �les, for providing access to text

and image �les, and for attaching calendar date and time to �les. No type

\�le" exists, as will be explained in section A.10.3.

A.10.1 Files

Our notion of �le is a general one that includes not only storage �les (disk

�les) but also terminals and other devices (for example, tape drives). Each

�le will in general support only a subset of the operations described here.

There are two basic kinds of �les, text �les and image �les. The two

kinds of �les may be incompatible. However, on any particular system, it

may not be possible to determine what kind a given �le is.

A text �le consists of a sequence of characters and is divided into lines

terminated by newline (nn) characters. A nonempty last line might not be

terminated. By convention, the start of a new page is indicated by placing

a newpage (np) character at the beginning of the �rst line of that page.

A text �le will be stored in the (most appropriate) standard text �le

format of the local operating system. As a result, certain control characters

400 APPENDIX A. CLU REFERENCE MANUAL

(such as NUL, CR, FF, uparrowC, "Z) may be ignored when written. In

addition, a system may limit the maximum length of lines and may add

(remove) trailing spaces to (from) lines.

Image �les are provided to allow more e�cient storage of information

than is provided by text �les. Unlike text �les, there is no need for image

�les to be compatible with any local �le format; thus image �les can be

de�ned more precisely than text �les.

An image �le consists of a sequence of encoded objects. Objects are

written and read using encode and decode operations of their types. (These

in turn will call encode and decode on their components until built-in types

are reached.) The objects stored in an image �le are not tagged by the

system according to their types. Thus if a �le is written by performing

a speci�c sequence of encode operations, it must be read back using the

corresponding sequence of decode operations to be meaningful.

A.10.2 File Names

�le name = data type is create, get dir, get name, get su�x,

get other, parse, unparse, make output, make temp, equal, similar,

copy

Overview

A.10. INPUT/OUTPUT 401

File names are immutable objects used to name �les. The

system �le name format is viewed as consisting of four string

components:

1. directory|speci�es a �le directory or device;

2. name|the primary name of the �le (for example, \the-

sis");

3. su�x|a name normally indicating the type of �le (for

example, \clu" for a CLU source �le);

4. other|all other components of the system �le name

form.

The directory and other components may have internal syn-

tax. The name and su�x should be short identi�ers. (For

example, in the TOPS-20 �le name \ps:hcluseriref.lpt.3";,

the directory is \ps:hcluseri", the name is \ref;', the

su�x is \lpt", and the other is \3". In the UNIX

path name \/usr/snyder/doc/refman.r", the directory is

\/usr/snyder/doc", the name is `refman', the su�x is \r", and

there is no other.)

A null component has the following interpretation:

1. directory|denotes the current \working" directory (for

example, the \connected directory" under TOPS-20 and

the \current directory" under UNIX|see also section

A.10.6);

2. name|may be illegal, have a unique interpretation, or

be ignored (for example, under TOPS-20, a null name

is illegal for most directories, but for some devices the

name is ignored);

3. su�x|may be illegal, have a unique interpretation, or

be ignored (for example, under TOPS-20, a null su�x is

legal, as in \hrwsifoo");

4. other|should imply a reasonable default.

Operations

create = proc (dir, name, su�x, other: string) returns (�le name)

signals (bad format)

402 APPENDIX A. CLU REFERENCE MANUAL

e�ects Creates a new �le name from its components; if any com-

ponent is not in the form required by the underlying system,

signals bad format. In the process of creating a �le name, the

string arguments may be transformed|for example, by trun-

cation or case-conversion.

get dir = proc (fn: �le name) returns (string)

get name = proc (fn: �le name) returns (string)

get su�x = proc (fn: �le name) returns (string)

get other = proc (fn: �le name) returns (string)

e�ects These operations return string forms of the components of

a �le name. If the �le name was created using the create op-

eration, the strings returned may be di�erent than those given

as arguments to create|for example, they may be truncated

or case-converted.

parse = proc (s: string) returns (�le name) signals (bad format)

e�ects This operation creates a �le name given a string in the

system standard �le name syntax.

unparse = proc (fn: �le name) returns (string)

e�ectsThis operation transforms a �le name into the system stan-

dard �le name syntax. We require that

parse(unparse(fn)) = fn

create(fn.dir, fn.name, fn.su�x, fn.other) = fn

for all �le names fn. One implication of this rule is that there

can be no �le name that can be created by create but not by

parse; if a system does have �le names that have no string

representation in the system standard �le name syntax, create

must reject those �le names as having a bad format. Alter-

natively, the �le name syntax can be extended so that it can

express all possible �le names.

make output =proc (fn: �le name, su�x: string)

returns (�le name) signals (bad format)

e�ects This operation is used by programs that take input from a

�le and write new �les whose names are based on the input �le

name. The operation transforms the �le name into one that

is suitable for an output �le. The transformation is done as

follows: (1) the su�x is set to su�x; (2) if the old directory is

not suitable for writing, it is set to null; (3) the name, if null

and meaningless, is set to \output". (Examples of directories

that may not be suitable for writing are directories that involve

transferring �les over a slow network.)

make temp = proc (dir, prog, �le id: string) returns (�le name)

signals (bad format)

A.10. INPUT/OUTPUT 403

e�ectsThis operation creates a �le name appropriate for a tempo-

rary �le, using the given preferred directory name (dir), pro-

gram name (prog), and �le identi�er (�le id). To be useful,

both prog and �le id should be short and alphabetic. The re-

turned �le name, when used as an argument to stream$open or

istream$open to open a new �le for writing, is guaranteed to

create a new �le and will not overwrite an existing �le. Fur-

ther �le name references to the created �le should be made

using the name returned by the stream or istream get name

operation.

equal = proc (fn1, fn2: �le name) returns (bool)

e�ects Returns true if and only if the two �le names will unparse

to equal strings.

similar = proc (fn1, fn2: �le name) returns (bool)

e�ects The same as the equal operation.

copy = proc (fn: �le name) returns (�le name)

e�ects Returns a �le name that is equal to fn.

end �le name

A.10.3 A File Type

Although �les are the basic information-containing objects in this package,

we do not introduce a �le type. Our reason is that few systems provide

an adequate representation for �les. On many systems, the most reliable

representation of a �le (accessible to the user) is a channel (stream) to that

�le. However, this representation is inappropriate for a CLU �le type, since

possession of a channel to a �le often implies locking that �le. Another

possible representation is a �le name. However, �le names are one level

removed from �les, via the �le directory. As a result, the relationship of a

�le name to a �le object is time-varying. Using �le names as representations

for �les would imply that all �le operations could signal non existent �le.

For these reasons, operations related to �le objects are performed by

two clusters, stream and istream, and operations related to the directory

system are performed by procedures.

Note that two opens for read with the same �le name might return

streams to two di�erent �les. We cannot guarantee anything about what

happens to a �le after a program obtains a stream to it.

A.10.4 Streams

stream = data type is open, primary input, primary output,error output, can read, can write,

reset,
ush, close, abort, is closed, is terminal,

404 APPENDIX A. CLU REFERENCE MANUAL

getc, peekc, empty, getl, gets,

putc, puts, putzero, putleft, putright, putspace,

getc image, putc image, puts image, gets image,

get lineno, set lineno, get line length,

get page length,get date, set date,

get name, set output bu�ered, get output bu�ered,

equal, similar, copy,

create input, create output, get contents, % string I/O

get buf, get prompt, set prompt, % terminal I/O

get input bu�ered, set input bu�ered, % terminal I/O

add script, rem script, unscript % scripting

Overview

Streams provide the means to read and write text �les and

to perform some other operations on �le objects. The opera-

tions allowed on any particular stream depend upon the access

mode. In addition, certain operations may have no e�ect in

some implementations.

When an operation cannot be performed because of an in-

correct access mode, implementation limitations, or proper-

ties of an individual �le or device, the operation will signal

not possible (unless the description of the operation explicitly

says that the invocation will be ignored). End of �le is sig-

naled by reading operations when there are no more characters

to read.

Streams provide operations to connect streams to strings, to

interact with a user at a terminal, and to record input/output

in one stream on another. These operations are described in

subsequent sections.

Operations

open = proc (fn: �le name, mode: string) returns (stream)

signals (not possible(string))

A.10. INPUT/OUTPUT 405

e�ects Opens a stream to fn in the given mode. The possible

access modes are \read", \write", and \append". If mode is

not one of these strings, not possible(\bad access mode") is sig-

naled. In those cases where the system is able to detect that the

speci�ed preexisting �le is not a text �le, not possible(\wrong

�le type") is signaled. If mode is \read", the named �le must

exist and a stream is returned upon which input operations

can be performed. If mode is \write", a new �le is created

or an old �le is rewritten. A stream is returned upon which

output operations can be performed. Write mode to storage

�les should guarantee exclusive access to the �le, if possible.

If mode is \append" and if the named �le does not exist, one

is created. A stream is returned, positioned at the end of the

�le, upon which output operations can be performed. Append

mode to storage �les should guarantee exclusive access to the

�le, if possible.

primary input = proc() returns (stream)

e�ects Returns the \primary" input stream, suitable for reading.

This is usually a stream to the user's terminal, but may be set

by the operating system.

primary output = proc() returns (stream)

e�ectsReturns the \primary" output stream, suitable for writing.

This is usually a stream to the user's terminal, but may be set

by the operating system.

error output = proc() returns (stream)

e�ects Returns the \primary" output stream for error messages,

suitable for writing. This is usually a stream to the user's

terminal, but may be set by the operating system.

can read = proc (s: stream) returns (bool)

e�ects Returns true if input operations appear possible on s.

can write = proc (s: stream) returns (bool)

e�ects Returns true if output operations appear possible on s.

getc = proc (s: stream) returns (char)

signals (end of �le, not possible(string))

modi�es s.

e�ects Removes the next character from s and returns it. Signals

end of �le if there are no more characters.

peekc = proc (s: stream) returns (char)

signals (end of �le, not possible(string))

e�ects This input operation is like getc, except that the character

is not removed from s.

406 APPENDIX A. CLU REFERENCE MANUAL

empty = proc (s: stream) returns (bool)

signals (not possible(string))

e�ects Returns true if and only if there are no more characters

in the stream. It is equivalent to an invocation of peekc, where

true is returned if peekc returns a character and false is returned

if peekc signals end of �le. Thus in the case of terminals, for

example, this operation may wait until additional characters

have been typed by the user.

getl = proc (s: stream) returns (string)

signals (end of �le, not possible(string))

modi�es s.

e�ects Reads and returns (the remainder of) the current input

line and reads but does not return the terminating newline (if

any). This operation signals end of �le only if there are no

characters and end-of-�le is detected.

gets = proc (s: stream, term: string) returns (string)

signals (end of �le, not possible(string))

modi�es s.

e�ects Reads characters until a terminating character (one in

term) or end-of-�le is seen. The characters up to the termina-

tor are returned; the terminator (if any) is left in the stream.

Signals end of �le only if there are no characters and end-of-�le

is detected.

putc = proc (s: stream, c: (char) signals (not possible(string))

modi�es s.

e�ects Appends c to s. Writing a newline indicates the end of the

current line.

putl = proc (s: stream, str: string) signals (not possible(string))

modi�es s.

e�ects Writes the characters of str onto s, followed by a newline.

puts = proc (s: stream, str: string) signals (not possible(string))

modi�es s.

e�ects Writes the characters in str using putc. Naturally it may

be somewhat more e�cient than doing a series of individual

putcs.

putzero = proc (s: stream, str: string, cnt: int)

signals (negative �eld width, not possible(string))

modi�es s.

A.10. INPUT/OUTPUT 407

e�ects Outputs str. However, if the length of str is less than cnt,

outputs cnt � length(str) zeros before the �rst digit or period

in the string (or at the end, if no such characters).

putleft = proc (s: stream, str: string, cnt: int)

signals (negative �eld width, not possible(string))

modi�es s.

e�ects Outputs str. However, if the length of str is less than cnt,

outputs cnt � length(str) spaces after the string.

putright = proc (s: stream, str: string, cnt: int)

signals (negative �eld width, not possible(string))

modi�es s.

e�ects Outputs str. However, if the length of str is less than cnt,

outputs cnt � length(str) spaces before the string.

putspace = proc (s: stream, cnt: int)

signals (negative �eld width, not possible(string))

modi�es s.

e�ects Outputs cnt spaces on s.

putc image = proc (s: stream, c: char) signals (not possible(string))

modi�es s.

e�ects Like putc, except that an arbitrary character may be writ-

ten and the character is not interpreted by the CLU I/O sys-

tem. (For example, the ITS XGP program expects a text �le

containing certain escape sequences. An escape sequence con-

sists of a special character followed by a �xed number of ar-

bitrary characters. These characters could be the same as an

end-of-line mark, but they are recognized as data by their con-

text. On a record-oriented system, such characters would be

part of the data. In either case, writing a newline in image

mode would not be interpreted by the CLU system as indicat-

ing an end-of-line.) Characters written to a terminal stream

with this operation can be used to cause terminal-dependent

control functions.

getc image = proc (s: stream) returns (char)

signals (end of �le, not possible(string))

modi�es s.

e�ects Provided to read escape sequences in text �les, as might

be written using putc image. Using this operation inhibits the

recognition of end-of-line marks, where used. When reading

from a terminal stream, the character is not echoed and is not

subject to interpretation as an editing command.

puts image = proc (s: stream, str: string) signals (not possible(string))

408 APPENDIX A. CLU REFERENCE MANUAL

modi�es s.

e�ects Writes the characters in str using putc image. Naturally

it may be somewhat more e�cient than doing a series of indi-

vidual putc images.

gets image = proc (s: stream, str: string) returns (string)

signals (end of �le, not possible(string))

modi�es s.

e�ects Reads characters until a terminating character (one in str)

or end-of-�le is seen. Using this operation inhibits the recog-

nition of end-of-line marks, where used. When reading from

a terminal stream, the characters read are not echoed and are

not subject to interpretation as editing commands. The char-

acters up to the terminator are returned; the terminator (if

any) is left in the stream. This operation signals end of �le

only if there are no characters and end-of-�le is detected.

close = proc (s: stream) signals (not possible(string))

modi�es s.

e�ects Attempts to terminate I/O and remove the association

between the stream and the �le. If successful, further use of

operations that signal not possible will signal not possible. This

operation will fail if bu�ered output cannot be written.

abort = proc (s: stream)

modi�es s.

e�ects Terminates I/O and removes the association between the

stream and the �le. If bu�ered output cannot be written, it

will be lost, and if a new �le is being written, it may or may

not exist.

is closed = proc (s: stream) returns (bool)

e�ects Returns true if and only if the stream is closed.

is terminal = proc (s: stream) returns (bool)

e�ects Returns true if and only if the stream is attached to an

interactive terminal (see below).

get lineno = proc (s: stream) returns (int)

signals (end of �le, not possible(string))

e�ects Returns the line number of the current (being or about

to be read) line. If the system maintains explicit line numbers

in the �le, said line numbers are returned. Otherwise lines are

implicitly numbered, starting with 1.

set lineno = proc (s: stream, num: int)

signals (not possible(string))

modi�es s.

A.10. INPUT/OUTPUT 409

e�ects If the system maintains explicit line numbers in the �le,

sets the line number of the next (not yet started) line to num.

Otherwise it is ignored.

get line length = proc (s: stream) returns (int)

signals (no limit)

e�ects If the �le or device to which the stream is attached has

a natural maximum line length, that length is returned. Oth-

erwise no limit is signaled. The line length does not include

newline characters.

get page length = proc (s: stream) returns (int)

signals (no limit)

e�ects If the device to which the stream is attached has a natu-

ral maximum page length, that length is returned. Otherwise

no limit is signaled. Storage �les will generally not have page

lengths.

get date = proc (s: stream) returns (date)

signals (not possible(string))

e�ects Returns the date of the last modi�cation of the

corresponding storage �le.

set date = proc (s: stream, d: date) signals (not possible(string))

modi�es s.

e�ects Sets the modi�cation date of the corresponding storage

�le. The modi�cation date is set automatically when a �le is

opened in \write" or \append" mode.

get name = proc (s: stream) returns (�le name)

signals (not possible(string))

e�ects Returns the name of the corresponding �le. It may be

di�erent than the name used to open the �le, in that defaults

have been resolved and link indirections have been followed.

set output bu�ered = proc (s: stream, b: bool)

signals (not possible(string))

modi�es s.

e�ects Sets the output bu�ering mode. Normally output may

be arbitrarily bu�ered before it is actually written out. Un-

bu�ered output can be used on some systems to decrease the

amount of information lost if the program terminates prema-

turely. For terminal streams, unbu�ered output is useful in

programs that output incomplete lines as they are working to

allow the user to watch the progress of the program.

get output bu�ered = proc (s: stream) returns (bool)

410 APPENDIX A. CLU REFERENCE MANUAL

e�ects Returns true if and only if output to the stream is

being bu�ered.

equal = proc (s1, s2: stream) returns (bool)

similar = proc (s1, s2: stream) returns (bool)

e�ects Returns true if and only both arguments are the same stream.

copy = proc (s: stream) returns (stream)

e�ects Returns a stream equal to s.

String Input/Output

It is occasionally useful to be able to construct a stream that is not con-

nected to a �le, but instead simply collects the output text into a string.

Conversely, it is occasionally useful to be able to take a string and convert

it into an input stream so that it can be given to a procedure that expects

a stream. String streams allow these functions to be performed. A string

stream does not have a �le name, a creation date, a maximum line or page

length, or explicit line numbers. The following stream operations deal with

string streams:

create input = proc (s: string) returns (stream)

e�ects An input stream is created that will return the characters

in the given string. If the string is nonempty and does not end

with a newline, an extra terminating newline will be appended

to the string.

create output = proc() returns (stream)

e�ects An output stream is created that will collect output text

in an internal bu�er. The text may be extracted using the

get contents operation.

get contents = proc (s: stream) returns (string) signals (not possible(string))

e�ects Returns the text that has so far been output to s. Signals

not possible if the stream was not created by create output.

Terminal I/O

Terminal I/O is performed via streams attached to interactive terminals.

Such a stream is normally obtained via the primary input and primary output

operations. A terminal stream is capable of performing both input and out-

put operations. A number of additional operations are possible on terminal

streams, and a number of standard operations have special interpretations.

Terminal input will normally be bu�ered so that the user can perform

editing functions, such as deleting the last character on the current line,

deleting the current line, redisplaying the current line, and redisplaying the

current line after clearing the screen. Speci�c characters for causing these

A.10. INPUT/OUTPUT 411

functions are not suggested. In addition, some means must be provided for

the user to indicate end-of-�le, so that a terminal stream can be given to

a program that expects an arbitrary stream and reads it until end-of-�le.

The end-of-�le status of a stream is cleared by the reset operation.

Input bu�ering is normally provided on a line basis. When a program

�rst asks for input (using getc, for example), an entire line of input is read

from the terminal and stored in an internal bu�er. Further input is not

taken from the terminal until the existing bu�ered input is read.

New input caused to be read by the getbuf operation will be bu�ered

as a unit. Thus one can read in a large amount of text and allow edit-

ing of that entire text. In addition, when the internal bu�er is empty,

the getc image operation will read a character directly from the terminal,

without interpreting it or echoing it.

The user may specify a prompt string to be printed whenever a new

bu�er of input is requested from the terminal; the prompt string will be

reprinted when redisplay of the current line is requested by the user. How-

ever, if new input is requested just when an un�nished line has been output

to the terminal, that un�nished line is used instead as a prompt.

The routine putc image can be used to cause control functions, such as

\n007" (bell) and \np" (new-page or clear-screen). We cannot guarantee

the e�ect caused by any particular control character, but we recommend

that the standard ASCII interpretation of control characters be supported

wherever possible.

Terminal output may be bu�ered by the system up to one line at a time.

However, the bu�er must be
ushed when new input is requested from

the terminal. Terminal streams do not have modi�cation dates, but they

should have �le names and implicit line numbers. The following additional

operations are provided:

getbuf = proc (s: stream, str: string) returns (string)

signals (end of �le, not possible(string))

modi�es s.

e�ects This operation is the same as gets, but for terminals with

input bu�ering, the new input read by getbuf is bu�ered as a

unit, rather than a line at a time, allowing input editing of the

entire text.

get prompt = proc (s: stream) returns (string)

e�ects Returns the current prompt string. The prompt string is

initially empty (\"). The empty string is returned for nonter-

minal streams.

set prompt = proc (s: stream. str: string)

modi�es s.

412 APPENDIX A. CLU REFERENCE MANUAL

e�ects Sets the string to be used for prompting to str. For non-

terminal streams there is no e�ect.

get input bu�ered = proc (s: stream) returns (bool)

e�ects Returns true if and only if s is attached to a terminal and

input is being bu�ered.

set input bu�ered = proc (s: stream, b: bool) signals (not possible(string))

modi�es s.

e�ects Sets the input bu�ering mode. Only bu�ered terminal

input is subject to editing.

Scripting

Streams provide a mechanism for recording the input and/or output from

one stream onto any number of other streams. This can be particularly

useful in recording terminal sessions. The following additional operations

are provided:

add script = proc (s1, s2: stream) signals (script failed)

modi�es s1.

e�ects Adds s2 as a script stream of s1. All subsequent input

from and output to s1 will also be output to s2. Not possible

exceptions that arise in actually outputting to s2 will be ig-

nored. This operation will fail if s2 cannot be written to or if

either stream is a direct or indirect script stream of the other.

rem script = proc (s1, s2: stream)

modi�es s2.

e�ects Removes, but does not close, s2 as a direct script

stream of s1.

unscript = proc (s: stream)

e�ects Removes, but does not close, all direct script streams

of s.

end stream

A.10.5 Istreams

istream = data type is open, can read, can write, empty, reset,
ush,

get date, set date, get name, close, abort, is closed, equal,

similar, copy

Overview

A.10. INPUT/OUTPUT 413

Istreams provide the means to read and write image �les and

to perform some other operations on �le objects. The opera-

tions allowed on any particular istream depend upon the access

mode. In addition, certain operations may be null in some im-

plementations.

When an operation cannot be performed, because of an in-

correct access mode, implementation limitations, or proper-

ties of an individual �le or device, the operation will signal

not possible (unless the description of the operation explicitly

says that the invocation will be ignored).

Actual reading and writing of objects is performed by encode

and decode operations of the types involved. All of the built-in

CLU types and type generators (except the routine type gen-

erators), and the �le name and date types, provide these oper-

ations. Designers of abstract types are encouraged to provide

them also. The type speci�cations of the encode and decode

operations for a type T are

encode = proc (c: T, s: istream)

signals (not possible(string))

decode = proc (s: istream) returns (T)

signals (end of �le not possible(string))

For parameterized types, encode will have a where clause re-

quiring encode operations for all components, and decode will

have a where clause requiring decode operations for all com-

ponents.

The encode operations are output operations. They write an

encoding of the given object onto the istream. The decode

operations are input operations. They decode the information

written by encode operations and return an object \similar" to

the one encoded. If the sequence of decode operations used to

read a �le does not match the sequence of encode operations

used to write it, meaningless objects may be returned. The

system may in some cases be able to detect this condition, in

which case the decode operation will signal not possible(\bad

format"). The system is not guaranteed to detect all such

errors.

Operations

open = proc (fn: �le name, mode: string)

signals (not possible(string))

414 APPENDIX A. CLU REFERENCE MANUAL

e�ects The possible access modes are \read", \write", and \ap-

pend". If mode is not one of these strings, not possible(\bad

access mode") is signaled. In those cases where the system

is able to detect that the speci�ed preexisting �le is not an

image �le, not possible(\wrong �le type") is signaled. If mode

is \read", the named �le must exist. If the �le exists, an im-

age stream is returned upon which decode operations can be

performed. If mode is \write", a new �le is created or an old

�le is rewritten. An image stream is returned upon which en-

code operations can be performed. Write mode to storage �les

should guarantee exclusive access to the �le, if possible. If

mode is \append" and if the named �le does not exist, one is

created. An image stream is returned, positioned at the end of

the �le, upon which encode operations can be performed. Ap-

pend mode to storage �les should guarantee exclusive access

to the �le, if possible.

can read = proc (s: istream) returns (bool)

e�ects Returns true if decode operations appear possible on s.

can write = proc (s: istream) returns (bool)

e�ects Returns true if encode operations appear possible on s.

empty = proc (istream) returns (bool)

e�ects Returns true if and only if there are no more objects in

the associated �le.

reset = proc (s: istream) signals (not possible(string))

e�ects Resets s so that the next input or output operation will

read or write the �rst item in the �le.

ush = proc (s: istream) signals (not possible(string))

e�ects Writes any bu�ered output to the associated �le, if possible.

get date = proc (s: istream) returns (date) signals (not possible(string))

e�ects Returns the date of the last modi�cation of the corre-

sponding storage �le.

set date = proc (s: istream, d: date) signals (not possible(string))

modi�es s.

e�ects Sets the modi�cation date of the corresponding storage

�le. The modi�cation date is set automatically when a �le is

opened in \write" or \append" mode.

get name = proc (s: istream) returns (�le name)

e�ects Returns the name of the corresponding �le. It may be

di�erent than the name used to open the �le, in that defaults

have been resolved and link indirections have been followed.

A.10. INPUT/OUTPUT 415

close = proc (s: istream) signals (not possible(string))

modi�es s.

e�ects Attempts to terminate I/O and remove the association

between s and the �le. If successful, further use of operations

that signal not possible will signal not possible. This operation

will fail if bu�ered output cannot be written.

abort = proc (s: istream)

modi�es s.

e�ects Terminates I/O and removes the association between the

istream and the �le. If bu�ered output cannot be written, it

will be lost, and if a new �le is being written, it may or may

not exist.

is closed = proc (s: istream) returns (bool)

e�ects Returns true if and only if s is closed.

equal = proc (s1, s2: istream) returns (bool)

e�ects Returns true if and only both arguments are the same istream.

similar = proc (s1, s2: istream) returns (bool)

e�ects Returns true if and only both arguments are the same istream.

copy = proc (s: istream) returns (istream)

e�ects Returns a stream that is equal to s.

end istream

A.10.6 Miscellaneous Procedures

There are a number of miscellaneous procedures that are useful for in-

put/output:

working dir = proc () returns (string)

e�ects Returns the name of the current working directory. The

working directory is used by the I/O system to �ll in a null

directory in a �le name.

set working dir = proc (s: string) signals (bad format)

e�ects Used to change the working directory. No checking of

directory access privileges is performed.

delete �le = proc (fn: �le name) signals (not possible(string))

e�ects Deletes the speci�ed storage �le. An exception may be

signaled even if the speci�ed �le does not exist, but an excep-

tion will not be signaled solely because the �le does not exist.

For example, an exception may be signaled if the speci�ed di-

rectory does not exist or if the user does not have access to the

directory.

416 APPENDIX A. CLU REFERENCE MANUAL

rename �le = proc (fn1, fn2: �le name) signals (not possible(string))

e�ectsRenames the �le speci�ed by fn1 to have the name speci�ed

by fn2. Renaming across directories and devices may or may

not be allowed.

user name = proc () returns (string)

e�ects Returns some identi�cation of the user who is associated

with the executing process.

now = proc () returns (date)

e�ects Returns the current date and time (see the next section).

e form = proc (r: real, x,y: int) returns (string) signals (illegal �eld width)

e�ects Returns a real literal of the form

[�] i �eld [.f �eld] e � x �eld)]

where i �eld is x digits, f �eld is y digits, and x �eld is Exp width

digits (see section A.9.4). If y = 0, the decimal point and f �eld

are not present. If r 6= 0.0, the leftmost digit of i �eld is not

zero. If r = 0.0, x �eld is all zeros. Illegal �eld width occurs if

x < 0 or y < 0 or x + y < 1. If necessary, x may be rounded

o� to �t the speci�ed form.

f form = proc (r: real, x,y: int) returns (string)

signals (illegal �eld width, insu�cient �eld width)

e�ects Returns a real literal of the form

[�] i �eld.f �eld

where f �eld is y digits. If x > 0, i �eld is at least one digit,

with leading zeros suppressed. If x = 0, i �eld is not present.

Illegal �eld width occurs if x < 0 or y < 0 or x + y < 1.

If necessary, r may be rounded o� to �t the speci�ed form.

Insu�cient �eld width occurs if real$exponent (r) � x after any

rounding.

g form = proc (r: real, x,y: int) returns (string)

signals (illegal �eld width, insu�cient �eld width)

e�ects If r = 0.0 or �1 � real$exponent (r) < x , the re-

sult returned is f form(r, x, y). Otherwise the result is

e form(r ; 1; x + y � Exp width � 3). Illegal �eld width occurs

if x < 0 or y < 0 or x + y < 1. If necessary, r may be

rounded o� to �t the speci�ed form. Insu�cient �eld width

occurs if r 6= 0:0 and � (�1 � real$exponent (x) < y) and

(x + y < Exp width + 3) after any rounding.

A.10.7 Dates

date = data type is create, get all, get day, get month, get year,

get hour, get minute, get second

A.10. INPUT/OUTPUT 417

Overview

Dates are immutable objects that represent calendar dates and times.

Operations

create = proc (day, month, year, hour, minute, second: int)

returns (date) signals (bad format)

e�ects Creates the speci�ed date. The ranges for the arguments

are (1 .. 31), (1 .. 12), (1 ..), (0 .. 23), (0 .. 59), (0 .. 59),

respectively; bad format is signaled if an argument is out of

range.

get all = proc (d: date) returns (int, int, int, int, int, int)

e�ects Returns the components in the same order as given to create.

get day = proc (d: date) returns (int)

get month = proc (d: date) returns (int)

get year = proc (d: date) returns (int)

get hour = proc (d: date) returns (int)

get minute = proc (d: date) returns (int)

get second = proc (d: date) returns (int)

e�ects Returns the speci�ed component of d.

unparse = proc (d: date) returns (string)

e�ects Returns a string representation of d|for example, \12

January 1978 01:36:59".

unparse date = proc (d: date) returns (string)

e�ects Returns a string representation of the date part of d|for

example, \12 January 1978".

unparse time = proc (d: date) returns (string)

e�ects Returns a string representation of the time part of d|for

example, \01:36:59".

lt = proc (d1, d2: date) returns (bool))

le = proc (d1, d2: date) returns (bool)

ge = proc (d1, d2: date) returns (bool)

gt = proc (d1, d2: date) returns (bool)

equal = proc (d1, d2: date) returns (bool)

e�ects The obvious relational operations;

if d1 < d2 , then d1 occurs earlier than d2.

similar = proc (d1, d2: date) returns (bool)

e�ects The same as the equal operation.

copy = proc (d: date) returns (date)

e�ects Returns a date equal to d.

end date

418 APPENDIX A. CLU REFERENCE MANUAL

