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1. INTRODUCTION

Malicious attacks are an increasing problem in distributed systems. If a node
holds an important secret, that secret could be exposed by an attack in which
an intruder gains control of that machine. An example of such a secret is
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the private key used by a certificate authority (such as VeriSign) to sign its
certificates.

A secret can be protected by secret sharing. Secret sharing schemes [Blakley
1979; Shamir 1979] allow a collection of servers to possess shares of a secret
value, such that any ¢ + 1 servers can collaborate to perform operations using
the secret, but any ¢ or fewer servers can learn nothing about the secret.

In a long-lived system, however, nodes can become compromised over time,
giving an adversary the opportunity to collect more than ¢ shares and recover
the secret. Proactive Secret Sharing (PSS) schemes [Cachin et al. 2002; Frankel
et al. 1997; Herzberg et al. 1995; Ostrovsky and Yung 1991; Rabin 1998; Zhou
et al. 2005] address this problem by using a share regeneration protocol, in
which a new set of shares of the same secret is generated and the old shares
are discarded, rendering useless any collection of ¢ or fewer old shares the ad-
versary may have learned.

Some PSS schemes reshare the secret among members of the same group.
This approach is not sufficient in practice: it assumes a world in which servers
that fail are later recovered, but recovery of compromised nodes is problematic.
The problem is that resharing schemes use ordinary secret keys to implement
secure channels, which are needed to reshare the secret. If the attacker learns
these keys or corrupts them while the node is compromised, we cannot use
them to communicate securely in the future.

This article describes a new resharing protocol called MPSS (for Mobile
Proactive Secret Sharing) that addresses this problem by allowing the mem-
bership of the group to change. The servers that hold the secret shares periodi-
cally execute a handoff protocol that produces a new set of shares for a different
(and possibly disjoint) set of servers. We present a novel way to accomplish this
transfer that works in an asynchronous network. MPSS protects the secret
even when up to ¢ servers in the old group and ¢ servers in the new group are
faulty. The number of shareholders in MPSS is n = 3t + 1, which is optimal for
an asynchronous protocol [Bracha and Toueg 1985].

Additionally, MPSS allows the threshold ¢ to change. This is desirable be-
cause the threshold has a meaning: it represents an assumption about how
easily nodes can be corrupted. If current events (e.g., a newly discovered vul-
nerability in Windows) dictate a reevaluation of this assumption, it is better
to change the threshold than to start over. To our knowledge ours is the first
scheme for changing the threshold that works even when there is up to the
threshold number of failures in both the old and new groups.

The MPSS protocol is intended to be efficient for values of ¢ that might occur
in practice; analysis shows that the expected range is 1-10 (see Section 3.4).
The protocol is designed to minimize latency and bandwidth utilization for
the normal case, when fewer than ¢ failures occur, for example, 0 or 1. How-
ever, even when there are as many as ¢ failures, performance degradation isn’t
severe.

Furthermore, our protocol uses an interesting technique for efficient han-
dling of “accusation” messages that may either be true (if sent by an honest
node) or false (if sent by a liar), when there is no way to tell which of the accus-
ing and accused nodes is faulty. We also describe an alternative approach in
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which the validity of such messages can be evaluated; this approach requires
the use of identity-based, forward-secure encryption as discussed further in
Section 5, but allows a more efficient protocol.

The main contributions of this article are the following: (1) the introduction
of an efficient, asynchronous protocol to reshare a secret to a new group of
shareholders; (2) extensions to that protocol to support changing the threshold;
and (3) an efficient way of handling verifiable accusations, which are useful
for building Byzantine-fault-tolerant systems. In the course of describing the
protocol, we show how techniques from several earlier works [Canetti et al.
2003; Castro and Liskov 2002; Herzberg et al. 1995] can be combined in novel
ways to achieve our security and performance goals.

The article is organized as follows. We begin by discussing related work.
Section 3 describes the network model and assumptions, and also discusses
pragmatic issues such as determining how frequently to reshare the secret.
Sections 4 and 5 describe our resharing scheme and the MPSS protocol, re-
spectively, and Section 6 explains how to change the threshold. We present a
discussion of performance in Section 7 and conclude in Section 8. The appen-
dices contain additional material, including informal correctness arguments.

2. RELATED WORK

Secret sharing was first proposed by Shamir [1979] and Blakley [1979]. Subse-
quent work by Feldman [1987] and Pedersen [1991] extended Shamir’s scheme
to allow shareholders to determine whether the dealer sent them valid shares,
hence allowing them to come to a consensus regarding whether the secret was
shared successfully.

Proactive secret sharing schemes [Frankel et al. 1997; Herzberg et al. 1995,
1997; Ostrovsky and Yung 1991; Rabin 1998; Zhou et al. 2005] attempt to
address the problem that shares learned by the adversary are compromised
forever by resharing the secret periodically among the same nodes. Proactive
secret sharing was first proposed by Ostrovsky and Yung [1991] and shown to
be practical in a synchronous network model by Herzberg et al. [1995].

Desmedt and Jajodia [1997] were the first to study redistribution of a secret
to a new group. Their work assumes a synchronous network model and is
limited because shares are not verifiable; a faulty node in the old group may
cause the receiving group to get bad shares. Wong et al. [2002] extend the
scheme of Desmedt and Jajodia to be robust against corrupted nodes in the old
group and provide verifiable shares. However, they require that all nodes in the
new group are nonfaulty, and their protocol takes exponentially many attempts
to complete in the worst case.

The protocol of Cachin et al. [2002] is the first efficient PSS scheme designed
for the asynchronous model. Whereas the Herzberg scheme computes each new
share as a function of a corresponding old share, the Cachin scheme is based
on resharing the shares of the secret and combining the resulting subshares to
form new shares of the secret. This scheme may allow the group membership
to change, but this issue is not addressed in Cachin et al. [2002]. Also, they
rely upon a collection of subprotocols, including a robust threshold signature
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scheme and a threshold coin toss protocol which are themselves challenging to
implement efficiently.

The scheme of Zhou et al. [2005] is intended to allow the group to move.
However, since their construction produces secret shares that are exponentially
large in n, the number of shareholders, the communication required to refresh
the secret is exponential. The approach works well for small ¢, for example, for
t =1 or¢ = 2. For example, the communication overhead of an implementation
of this scheme [Chen 2004] is 47KB for ¢t = 1, 3.4MB for ¢ = 2, and 220MB for
t=3.

Our approach builds on the work of Herzberg et al. [1995], but they assume
the group membership is fixed and we allow it to change. Also, we assume a
much weaker (asynchronous) network. Our protocol makes use of accusations
as part of choosing the new shares, as does Herzberg et al. However, their
approach assumes that lack of response implies the sender is faulty; this as-
sumption doesn’t work in an asynchronous setting. We show how to overcome
this difficulty, both with and without verifiable accusations, and still ensure
that honest servers can eventually get their shares.

Various generalizations of secret sharing have been proposed, for exam-
ple, assigning differing weights to shareholders if some are presumed to be
more trustworthy than others [Ito et al. 1987; Shamir 1979], or using sepa-
rate thresholds for liveness and safety [Cachin et al. 2002]. Although many
of the proposed techniques are applicable to MPSS, we do not discuss them
here in order to clearly present the features that we believe are most useful in
practice.

3. MODEL AND ASSUMPTIONS

In this section we discuss how we model the network and the power of the ad-
versary, as well as the cryptographic assumptions our protocols require. Briefly,
we assume that the network is asynchronous and under the control of the ad-
versary. The adversary may adaptively corrupt a limited number of nodes over
a period of time, thereby learning all of their stored information and causing
them to behave arbitrarily badly.

We assume a system in which each node (or server) has a public signing key
and also a public encryption key; the secret keys associated with these pub-
lic keys are known only to the node. Each node also has a unique nonzero
identifier. The correspondence between node ids and public keys is known by
all nodes, for example, a node’s id might is a cryptographic hash of its public
keys; this precludes Byzantine nodes from successfully forging node ids. This
information is propagated by some mechanism independent of MPSS, for ex-
ample, by a Byzantine-fault-tolerant membership service [Cowling et al. 2009;
Rodrigues et al. 2007].

3.1 Epochs and Limitation of Corruptions

System execution consists of a sequence of epochs, each of which has an asso-
ciated epoch number. In any given epoch e, a particular group of n nodes in
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the system is responsible for holding the shares of the secret. At the end of the
epoch, the secret is transferred from these nodes (“the old group”) to a new set
of nodes (“the new group”) and the system moves to the next epoch.

The adversary is assumed to be active and adaptive: it may decide to corrupt
nodes at any point. We assume that the adversary can corrupt no more than
a threshold ¢ of the nodes in a group holding the secret in epoch e before the
end of that epoch. Additional nodes may be corrupted after they have left the
epoch. Because absolute clocks are not compatible with an asynchronous net-
work, epochs are defined locally rather than as a global time period; the details
are in Section 5.1.

When a node becomes corrupted, its internal state is revealed to the adver-
sary and it can behave arbitrarily: it is no longer constrained to follow the
protocol. We assume that corrupted nodes remain corrupted forever. This is
reasonable because once the adversary knows a node’s secret keys, it would be
unsafe to consider that node recovered without changing its keys, in which case
it would effectively be a different node.

3.2 Network Assumptions

Nodes communicate over a network by sending messages to one another; we
assume messages are point-to-point: there is no broadcast channel. The net-
work is asynchronous and unreliable: messages may be lost or delivered out of
order, and messages may appear that were not sent by any party in the system.
This model reflects the realities of many wide-scale networks such as the Inter-
net. To capture the worst possible network behavior, we assume an intelligent
adversary controls all communication: it receives all messages, and determines
what messages are to be delivered, and in what order.

For termination, but not safety, we require a bound on message delivery. In
particular, we assume strong eventual delivery.

—Strong eventual delivery. Assuming a sender keeps retransmitting a mes-
sage, that message will eventually be delivered with a maximum delay
bounded by an unknown variable that does not increase exponentially in-
definitely.

This delivery assumption is the one used by Castro and Liskov [2002]. Any
proactive secret sharing protocol needs to assume bounded eventual delivery
in some form, to guarantee that epochs fit within a bounded time period.

3.3 Cryptographic Assumptions

The resharing protocol requires secure communication channels which we im-
plement using cryptography. All messages are signed by the sender using its
secret signing key and can be verified by the recipient using the associated pub-
lic key. In addition, the content of messages is often encrypted so that only the
target can read it.

The adversary can record all messages and examine them later. Further-
more, our constraint on the adversary doesn’t limit its behavior once a node
has left the epoch in which it was a shareholder. Therefore the adversary is
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free to attack a node after this point and if it can recover its decryption key, it
will be able to decrypt the old messages and thus learn secret information.

We prevent this attack by using forward-secure encryption [Canetti et al.
2003]. This technique assigns each node a single public encryption key, but
the private key changes every epoch. Encryption is done using both the public
key and the epoch number, and such a message can be decrypted only by using
the secret key for that epoch. When a node leaves an epoch it advances its
secret key to the one used for the next epoch, and deletes all information about
the previous private key. After this point it will no longer be able to decrypt
messages sent to it in the previous epoch.

All proactive secret sharing schemes require some way of changing the en-
cryption keys. This could be achieved by having nodes choose new encryption
keys (and delete their previous key) in each epoch, but this requires that nodes
in the old group know the new encryption keys for all new nodes. The question
that arises is: how do nodes know all these keys? Note that we cannot rely on
new nodes telling old nodes their keys, because some of these communications
may not happen, for example, if the new node is already corrupted. Forward-
secure encryption is an elegant way to ensure that old nodes know how to send
messages to new nodes, without needing to learn their new encryption keys.

3.4 Pragmatics

MPSS ensures that the adversary is unable to learn the secret if more than ¢
shares are needed to do this. However, there is also the question of how to set
up a system so that the constraint on the adversary works in practice.

There are several parameters that impact the security of the system, includ-
ing: (1) the duration of epochs d; (2) the threshold ¢ for each epoch; (3) the
membership of the group in each epoch; (4) and the membership of nodes in
the system, from which each group is chosen. We assume an administrator has
configured the system with appropriate values for ¢ and d, given the security
and cost goals and the reliability of nodes in the system, but choosing these val-
ues is more art than science. Rodrigues et al. [2007] give an analysis of these
parameters that provides some guidance. Their results indicate that values of
t > 10 aren’t needed, and that even if nodes are quite reliable, ¢ > 2 seems to be
needed. For example, suppose servers fail independently, and the probability
that any given server is or becomes faulty during an epoch is 2%. With ¢ = 2,
there is a 23% chance that there will be more than ¢ faults in a group within
the first 1000 epochs. However, the probability of failure drops exponentially
as t increases. If we increase ¢ to 6, for example, the chance of more than ¢
failures in any of the first 1000 epochs drops to 5 x 10~%, which is plausible. If
d = 24 hours, this corresponds to a system that survives for about 3 years; if
the probability of failure is reduced to 1%, the system can survive for 20 years.

Practitioners must also be concerned with a number of other issues. For in-
stance, the selected epoch duration must take into account the fact that the
adversary may lengthen epochs through denial-of-service attacks that make it
impossible for 2¢ + 1 nonfaulty nodes to communicate. (The duration of such
wide-scale attacks must be limited for any proactive protocol to be effective;

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 34, Pub. date: December 2010.



MPSS: Mobile Proactive Secret Sharing . 34:7

fortunately, historical evidence supports the reasonableness of this assump-
tion.) These deployment considerations apply to many proactive schemes, not
just MPSS, and a thorough treatment of the topic is beyond the scope of this
article.

An important point is that once the parameters are set and the system has
been deployed, the system can perform resharings autonomously. All the ad-
ministrator must do to maintain the system is to add new nodes to replace
ones that may have been corrupted. Since it isn’t possible to tell that a node is
Byzantine faulty, we recommend a methodology in which nodes in the system
are periodically refreshed; their secret keys are changed and their code is rein-
stalled from a trusted disk image, after which they rejoin the system as a new
node. The old group can collectively choose members of the new group with
a preference for recently added nodes, since these are less likely to have been
corrupted already. Each group member in epoch e can independently initiate
the resharing protocol after the intended epoch duration d has passed since the
start of epoch e, according to its local clock. No clock synchronization assump-
tions are required, except that the skew in nonfaulty nodes’ clock rates must
be small enough that the error in d is acceptable.

If the environment changes (e.g., new attacks, new defenses, or changes in
security or cost goals), the administrator can instruct the system to change
parameters such as ¢ and d. Changing the threshold is discussed in Section 6.
The fact that MPSS allows the threshold to change distinguishes it from several
earlier schemes, for example, Herzberg et al. [1995] and Cachin et al. [2002].

4. THE RESHARING TECHNIQUE

In this section we describe our resharing technique. We begin by describing
earlier work on which our approach is based. We refer to the secret as s and
the threshold as ¢.

4.1 Preliminaries

Shamir’s secret sharing scheme. In Shamir’s secret sharing scheme [Shamir
1979], the secret is s = P(0), where P is a polynomial of degree ¢ with random co-
efficients (except for the constant term), computed over a finite field. Each node
in the group holding shares knows P(i), where i is the node’s unique, nonzero
identifier.

With ¢+ 1 points on P, we can interpolate to learn P and thus learn P(0) = s.
However, with only ¢ points, there is still a degree of freedom left; therefore, the

secret may be any value, and it is independent of any ¢ points on P at inputs
other than 0.

Verifiable secret sharing. In a secret sharing scheme, players must trust that
shares they receive are correct. In a verifiable secret sharing scheme, addi-
tional information is given that allows each player to check whether or not its
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share is correct. Each message that must be checked contains additional infor-
mation in the form of commitments. Commitments are sent in the clear and
can be used by the recipient to determine whether the rest of the information
in the message has the appropriate properties; recipients use them to check
that the polynomial used as the basis for the sent information equals zero at
some predetermined point and that a point sent to it is on the polynomial. In
Appendix A we describe how we use Feldman’s VSS scheme [1987]; however,
we could just as easily use a different VSS such as Pedersen’s scheme [1991].

Herzberg et al.’s proactive secret sharing. Our method for generating the new
shares is based on the proactive secret sharing scheme of Herzberg et al. [1995].
Herzberg et al’s scheme includes two protocols: a share renewal protocol which
allows nodes that already know their share to produce a new, independent
share, and a share recovery protocol which allows a node that has lost its share
to learn it.

In Herzberg et al. [1995], share renewal is done by choosing a random poly-
nomial @ such that @(0) = 0; node 7’s new share is then P'(;) = P() + Q). This
is still a valid sharing of the same secret since P + @ is a random polynomial
with constant coefficient s.

The polynomial @ is selected by having each node i produce a random poly-
nomial @; such that @;(0) = 0. Node i then sends a point @;(k) to each node
k in the group, along with a commitment so that recipients can check that the
constraint on @; holds. Then the nodes agree on a subset of the @; polynomials
such that each polynomial in the subset is valid for at least ¢ + 1 honest nodes;
the polynomial @ is the sum of the polynomials in the subset. Finally, each
node i at which the subset is valid computes its new share to be its old share
s; added together with the points it received for the each @; in the subset. The
details of the protocol ensure that ¢ corrupted nodes cannot learn the difference
polynomial @.

The share recovery protocol is used to recover shares for nodes that have lost
their share or where the last resharing didn’t work because a proposal in the
selected set was invalid for them. The share recovery protocol for node i is done
by choosing a random polynomial R; such that R;(i) = 0; again the protocol
prevents corrupted nodes from learning the selected polynomial. Each other
node jsends P(j)+ R;(j) to node i, which reconstructs the polynomial P+ R; and
evaluates it at i to obtain its share.

4.2 Our Approach

We want to generate new shares for the same secret and move the new shares
to a new group of nodes which may be completely disjoint from the old ones.
Since the attacker can corrupt up to ¢ nodes in a group, in this system it can
control 2¢ nodes between the two groups.

Our approach is based on the Herzberg et al.’s resharing scheme. However,
an important point is that if that scheme is unmodified, it is insecure when
applied to secret redistribution to a new group. This is because each member
of the old group computes a share for the corresponding member of the new
group; if £ nodes in the old group are corrupted, and a different t nodes in the
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new group are corrupted, the adversary learns 2¢ of the new shares. We call
this a collusion attack. This problem does not arise in the setting described by
Herzberg et al. because the group membership does not change; the old and
new groups are always the same servers.

Our solution to the collusion problem is to combine the resharing and share
recovery into a single step. Instead of computing P(k) + @(k) in the old group
and sending it to new node %, the old nodes additionally select, for each new
node k&, a polynomial R;, such that R;(k) = 0, and each old node i sends P(i) +
(Q@) + Ry()) to k. Upon receiving at least ¢+ 1 such points, & can interpolate to
obtain the polynomial P + @ + R}, then evaluate this polynomial at % to obtain
its share of the original secret.

P(k) + Q(k) + Rr(k) = P(k) + Q(k) = P'(k)

Since R}, is random everywhere except at &, this polynomial provides the new
node % no additional knowledge except P'(k).! Furthermore, old nodes learn
nothing about the new share P'(k) because each old node only knows a single
point on any given polynomial P + @ + R, and this polynomial is random and
independent of P’ except at &.

The difficulty here is in generating these polynomials @ and Rj in the old
group so that no node knows too much about them; in particular, each old node
i should learn only Q) + R.(@) for all £. If a node were capable of learning
additional points, an adversary could accumulate ¢ + 1 points and interpolate
@ + Rj,. Then a faulty old node i could learn share P'(i) intended for the new
group. Furthermore, nodes must not be able to learn points on @ individually,
because ¢ collaborating faulty old shareholders could take their ¢ points plus
®(0), which is known to be zero, and thus interpolate @. They could then add
Q) to their old shares P(i) to obtain points on P’ which are only supposed to
be known only to new shareholders.

Our approach works as follows. Each old node i produces a random polyno-
mial @; and also a random polynomial R;;, for each node % in the new group.
We require that @;(0) = 0 and also that R;;(k) = 0 for each k. Node i sends to
each old node j a proposal containing point @;()) + R;z()), for each R;.; these
proposals also contain commitments so that recipients can check their validity.

Old nodes decide on a subset of proposals to use for the resharing. Then
they add up the points they received for each of the selected proposals to arrive
at the values to send to the new node. The value sent from old node i to the
new node £ is 7’s old secret share plus the sum of points the old node received for
Qi+ Ry, for each selected proposal l. Thus % receivesi's point on the polynomial
P+ @ + Ry,. When k receives ¢+ 1 of these points, it can interpolate to determine
its share of the new polynomial P = P + Q.

IThis assumes that i # %, or else we have P'(i) = P(i) + Q(i), which is the property of the Herzberg
scheme we wish to avoid. We ensure that this is true by mandating that each node’s identifier must
be unique.
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5. THE RESHARING PROTOCOL

This section describes the MPSS protocol for moving the secret to a new
group without changing the threshold. Section 6 describes how to change the
threshold.

Our system uses BFT [Castro and Liskov 2002] to carry out agreement in the
old group. As in BFT, at any moment one of the group members is the primary,
which directs the activities of the group. The other nodes watch the primary,
however, and if it is not behaving properly, for example, not acting on requests
when there is work to do, they carry out a view change protocol to select a
different node as primary. Nodes are chosen to be the primary in subsequent
views round-robin, so that the attacker is unable to control this choice. Details,
such as how timeouts are chosen to ensure progress, can be found in Castro and
Liskov [2002]. We require, as BFT does, that the size of the groupisn > 3¢+ 1,
which is optimal in an asynchronous network [Bracha and Toueg 1985].

The protocol has two stages. In the first stage, old nodes select polynomials
@ and Ry, that will be used for resharing the secret. Each old node i generates
polynomials @; and R;, and sends proposals describing them to other old nodes;
the proposals contain commitments so that nodes can evaluate their validity.
The old nodes then agree on a set of proposals that at least ¢+1 honest old nodes
consider valid; these proposals define the selected polynomials @ and R;.

In the second stage, each old node jthat knows its share computes a point
P()) + Q()) + Rr()) for each new node k. It sends this information to the new
nodes, which use it to compute their shares.

As mentioned earlier, all messages are signed. Honest recipients ignore
messages that aren’t properly signed by the sender or have the wrong format.
Additionally messages that contain secret information are encrypted so that
only the recipient can see their contents.

The protocol works as follows.

(1) Old shareholders generate proposals.

(a) Each server i in the old group generates random values q;1, ..., g to
generate a random degree ¢ polynomial @;(x) = g;1x +. ..+ q;x', where
Qi(0)=0.

(b) For each %k in the new group, server i generates random values
Tikds.---Tike to generate n polynomials R;x(x) = rip1x + ripox? + ... +
ri,k,txt, such that Ri,k(k) =0.

(c) Server i computes commitments to the @; and R;;, polynomials it gen-
erated.

(d) Server i, for each jin the old group, computes the vector V;;, which
consists of 3¢ + 1 points @;()) + R;x()), one for each R;; polynomial.

(e) Server i generates a proposal, which consists of all the commitments,
along with all the V;; vectors. Each vector V;; is encrypted with js
public encryption key; thus only node j will be able to see the points
intended for it. Server i signs this proposal and sends it to all other
members of the old group.

(2) The primary collects proposals and sends out a set of them. The primary
waits until it receives 2¢+1 proposals. Once it does, it sends all members of
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the old group a message containing cryptographic hashes of each proposal
it received.

(8) Parties check the proposals and accept or reject them.

4)

(a) When node j receives the primary’s list of hashes, it checks each
proposal on the list for validity; if j is missing a proposal on the list
(because it did not receive that proposal directly from the sender) it
requests the proposal from the sender or the primary. A proposal from
iis valid at jif the values in V; ; are consistent with the commitments,
and the commitments prove that @;(0) = 0 and Vk. R;.(k) =0.

(b) If node j does not have its secret share it recovers it by requesting
earlier resharing information that it did not receive (see step 11 that
follows).

(c) Once it has its secret share, server jresponds to the primary, listing
proposals found to be invalid; we say it accuses these proposals.

The primary determines the final set of proposals to use. The primary
processes responses as follows. Initially, the current-set of proposals con-
tains the 2¢+ 1 proposals it selected, d is 0, and the conflict-list and accept-
list are empty.

(a) If the response is from a node on the conflict-list, it is ignored.

(b) Else, if the response contains no accusations against proposals in the
current-set, the party sending it is considered to be satisfied and is
added to the accept-list.

(c) Else, the primary chooses an accused proposal that is in the current-
set deterministically (e.g., the one from the lowest numbered accused
sender), removes it and the responder’s proposal (if any) from the
current-set, and increments d. The node that sent the removed pro-
posal and the responder are then both placed on the conflict-list and
removed from the accept-list if they were on it.

When the accept-list contains 2¢ + 1 — d members (including the primary),

the proposal selection phase is complete and has led to the identification

of a final proposal set S.

(5) Agreement. The primary creates a message listing the signed responses

(6)

(7

(in the order the primary processed them) and uses the BFT agreement

protocol [Castro and Liskov 2002] to get the group to agree on this mes-

sage.

Computing S. After agreement is reached, each server j processes the

agreed-to message as described before (in step 4) to determine the final

proposal set S. If this execution doesn’t lead to the step 4 termination

condition, the primary is faulty; the group will carry out a view change,

elect a new primary, and rerun the protocol.

Old shareholders send resharing messages to the new shareholders.

(a) Node j deletes any resharing messages it received in the previous re-
sharing.

(b) If node jhas its secret share and the proposals in S, it decides whether
it finds all proposals in S to be valid. If so, it uses the commitments
to each @; and R;; for each i in the final proposal set to compute
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commitments to @ and each Rj. Also, for every k& in the new group,
server j computes v, = s; + > . ¢ Qi() + R;x()), and encrypts it for
k. Server j sends the final commitment information along with every
encrypted v to each node in the new group.
(c) Node jdeletes its secret information.
(8) New shareholders receive resharing messages. Each node %k in the new
group checks that the point v it received was generated correctly, that is,
v = P(j) + Q()) + Ri(j), which it can verify using the public commitments
to P, @, and Ry. If the message is valid, %2 sends a receipt to the sender
and retains the message so that it can propagate it to other new nodes.
(9) Discarding resharing messages. Each old node that sent resharing mes-
sages waits until it receives ¢ + 1 receipts and then discards the resharing
message it sent to the new group. Deleting the resharing message is safe
because we know that at least one honest new node has the message, and
it will propagate it to other new nodes.

(10) New shareholders compute their shares. Once node k in the new group
receives ¢ + 1 valid shares, all with the same commitment information, it
uses them to interpolate the polynomial P+ @ + Ry. Then % evaluates this
polynomial at % to obtain its new secret share (P+ @ + Rp)(k) = (P + Q)(k).

(11) Share recovery. Each k in the new group that does not yet have its secret
share requests resharing messages from both the old and new sharehold-
ers. Servers in the old group reply by sending their resharing message (if
they have one). Servers in the new group reply by sending all the reshar-
ing messages they received from the old group.

Figure 1 illustrates the message flow for a simple run of the protocol with
t = 1 and fail-stop failures in both the old and new groups. An important point
is that most of the messages are small, except for the proposals and the share
transfer messages that are sent to the next group; we discuss performance
in Section 7. Figure 2 contains an example that demonstrates some of the
subtleties.

5.1 Discussion

This section provides a precise definition of epochs and the constraint on the
adversary. Then it discusses the correctness (secrecy, integrity, and termina-
tion) of the protocol, assuming the adversary constraint. More details can be
found in Appendix C.

Epochs. In an asynchronous system, nodes will not enter and leave epochs
at precisely the same time, so we require a careful treatment of the concept of
an epoch. We begin by defining a local property.

—Local Epochs. A node is in epoch e if it has secret shares or secret keys asso-
ciated with epoch e. It leaves epoch e when it wipes out all such information
from its memory so that it can no longer be recovered and additionally dis-
cards its resharing message if it had one; at this point it enters epoch e + 1.
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Fig. 1. The diagram illustrates an execution of the resharing protocol with ¢ = 1 where node 3
in the old group and node 7 in the new group are faulty and do not send messages. After the
nodes in the old group collect ¢+ 1 receipts, they discard the resharing messages they sent and stop
participating in the protocol. If node 7 did not fail and was simply partitioned from the network, it
can later use share recovery within the new group to obtain the share transfer messages.

We use G, to identify the set of nodes responsible for the secret in epoch e.
Nodes not in G, advance to the next epoch by advancing their secret decryp-
tion key; nodes in G, additionally discard their shares and transfer the new
information to nodes in G.1.

Intuitively the adversary must be unable to corrupt more than ¢ nodes in G,
while those nodes have information that would enable it to obtain the secret.
One way to define this constraint is to begin with a global property.

—System Epochs. The system is in system epoch e from the moment the first
honest node in G, enters epoch e until the moment the last honest node in
G, leaves epoch e.

The adversary is constrained as follows.

—System Compliance Constraint. The adversary is system compliant through
epoch e if, for all i < e, it is able to corrupt no more than ¢ replicas belonging
to G; while the system is in any system epoch up to i.

This definition is sufficient for both safety and liveness. It is appealing for
its simplicity, but it restricts the adversary more than necessary. We discuss
a weaker constraint in Appendix C.4. Achieving security under the alterna-
tive definition requires modifying the resharing protocol to use forward secure
signatures.

Secrecy. MPSS preserves secrecy because the @ and R, polynomials used to
generate the new share polynomial P’ are random, and the adversary does not
know them. @ and R; are the sum of the proposals selected by the protocol.
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(1) Each node in the old group sends all of its proposals to each other node in the old group.
The proposals sent by r1 and r2 are good for 3 and r4 but bad for the other good nodes.

(2) The primary selects an initial proposal set containing the proposals of r1 — r5 and sends
this information to the other nodes. Since there are at most ¢ bad replicas, and the initial
proposal set contains 2t + 1 proposals, at least ¢+ 1 proposals from good replicas are included
in the initial set; in this case there are 3 good proposals, from 73 — r5.

(3) Nodes evaluate the proposal set. Since they can see only the points intended for them, honest
nodes cannot tell whether the proposals are good for other nodes. Therefore 3 and r4 accept
all proposals.

(4) The primary receives messages from r1 — r4, none of which contains any accusations, so all
are placed on the accept-list. Since 2¢t+ 1 —d is greater than the size of the accept-list, step 4
continues.

(5) The primary receives a message from r5 accusing both r1 and r2. It cannot remove both
proposals from the current-set, since 75 might be a bad replica, but it is safe to remove one
proposal: this way each bad replica can eliminate no more than one good proposal, so that
at the end the final set will contain at least one good proposal. It removes r1’s and 75's
proposals from the current-set and removes r1 from the accept-list; also it places r1 and r5
on the conflict-list. Since 2t+1—d is greater than the size of the accept-list, step 4 continues.

(6) The primary receives a message from r6 accusing both r1 and r2. It removes r2’s proposal
from the current-set and removes r2 from the accept-list; also it places r2 and r6 on the
conflict-list. Since 2t + 1 — d is greater than the size of the accept-list, step 4 continues.

(7) The primary receives a message from r7 accusing r1 and r2. Since neither of these proposals
is in the current-set, it places r7 on the accept-list and step 4 terminates. At this point the
final proposal set contains proposals from r3 and r4, both of which are good.

(8) The primary runs the agreement protocol on the final proposal set.

(9) Nodes r3 — r7 compute the final proposal set by rerunning the primary’s computation; since
this computation is deterministic, they all arrive at the same final set and thus the same
polynomials @ and Ry. Then they send resharing messages based on these polynomials and
delete their secret information.

(10) Honest new nodes receive these messages, extrapolate to obtain their shares, and send re-
ceipts.

(11) Nodes r3 — r7 receive t + 1 receipts and discard their resharing messages.

Fig. 2. Example run of the protocol. We have ¢ = 2 and a group of size 7. Replicas r1 and r2 are
faulty. The example assumes that all honest nodes have their shares; if not they can obtain them
(in step 3) by requesting resharing messages from one another and from members of the earlier
group. The example shows that waiting for 2¢ + 1 responses in step 4 of the protocol isn’t sufficient.
When the primary receives r5’s message, it can only remove one accused proposal (since 5 might
be bad). If we completed step 4 at this point, we would have a proposal set containing r2’s proposal,
so that the only honest nodes that can produce new points are 3 and r4, which isn’t sufficient to
allow resharing of the secret.

Proposals from honest nodes are random, so as long as this set contains at least
one proposal from an honest old node, @ and R;, will also be random.

MPSS ensures that the set has at least one proposal from an honest node.
The initial proposal set contains 2¢ + 1 proposals, and therefore at least ¢ + 1
of them are from honest nodes. In step 4, each dishonest replica can remove
one honest proposal, either by accusing it, or because an honest node’s accu-
sation causes its honest proposal to be removed (along with the bad proposal).
However, this eliminates at most ¢ honest proposals, since there are at most
t bad replicas. Therefore at least one honest proposal remains when step 4
terminates.
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Note that nodes must discard their secret decryption keys as part of leaving
an epoch. Otherwise, the adversary could record messages and decrypt them
later, when it corrupts their recipients.

Integrity. The protocol also ensures that each new node that learns its share,
learns a share of the same secret and these can be combined to form the secret.
This follows because all honest old nodes compute the same proposal set in
step 6, and therefore send points using the same polynomials @ and R;. Also,
new nodes construct their share only after receiving ¢ + 1 valid resharing mes-
sages, all with identical commitments. Since at least one of these messages
is from an honest old node, we can be sure that P'(0) = P(0), where P is the
polynomial used in the old group and P’ is the polynomial used in the new

group.

Termination. Termination requires that each step in the protocol termi-
nates, assuming strong eventual delivery. The critical step here is step 4. First
note that in step 4, the primary may need to receive more than 2¢+ 1 responses,
even though there may be only 2/ + 1 honest nodes. However, if all honest
replicas have replied, at least 2t + 1 — d replicas are on the accept-list. This
follows because at least 2¢ + 1 nodes are honest and d is an upper bound on the
number of honest nodes on the conflict-list (since each time a pair of nodes is
added to the conflict-list at least one of them is bad). Therefore if step 4 has not
yet terminated, it is safe to wait for another response.

In addition step 4 ensures that the selected proposal set is good for at least
t + 1 honest old nodes, and therefore honest new nodes will receive enough
matching resharing messages so that they can compute their shares. Step 4
terminates when 2¢+ 1 — d replicas are on the accept-list. Therefore 2+ 1 —d is
a lower bound on the number of good replicas that have accepted the proposal
set; since d < ¢ there are at least ¢ + 1 of them. Figure 2 shows that simply
waiting for 2¢ + 1 replies in step 4 isn’t sufficient.

5.2 Verifiable Accusations

The protocol described earlier doesn’t check accusations; it simply acts on them.
The logic is that if one node accuses another, at least one of them is corrupt, so
we remove both. In this section, we describe a scheme in which accusations can
be verified. It uses more sophisticated cryptographic primitives (and stronger
assumptions) to simplify the protocol.

Verifiable accusations require a way for nodes to check the accuser’s claim
that information sent to it was invalid. It doesn’t work for the accuser to pro-
vide the decryption of the bad message, since it might lie. Instead, the ac-
cusation includes a key that enables other nodes to decrypt the bad message
sent to the accuser, but in a way that does not reveal secret information sent
by honest nodes to the accuser. We accomplish this by using forward-secure
identity-based encryption, described in Figure 3.

Our use of identity-based encryption is atypical, so we first sketch how we
use it without taking forward security into account. Each node jhas a master
key SK; with corresponding public key PK;. When i wants to send a message
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A forward-secure identity-based encryption scheme is a collection of five algorithms:

—Generate() produces a public key PK and the corresponding master secret key for epoch 0,
SKp.

—Update(SK.) takes the master secret key for epoch e and produces SKc+1, the master secret
key for epoch e + 1.

—Extract(SKe,id) takes the master secret key for epoch e and an identity i¢d and produces an
identity key ske ;q-

—Encrypt(PK, e, id, m) takes an epoch e, identity i¢d, and message m and produces ciphertext c.

—Decrypt(ske iq,c) takes an identity key ske ;q and ciphertext ¢ that was encrypted for epoch e
and identity id and returns the original message m.

The security properties of this scheme follow immediately from those of forward-secure encryption
and identity-based encryption, respectively. Note that this scheme differs from the forward-secure
IBE scheme of Yao et al. [2004], wherein Update() can also operate on identity keys—a property
that is undesirable for our application. We describe a way to implement identity-based forward-
secure encryption in Appendix B.

Fig. 3. Forward-secure identity-based encryption.

to Jj, it encrypts it using PK; and 7’s own identity. Then j can run Extract() to
derive the identity key needed to decrypt i’s message. However, if i sends a
bogus message, j can reveal the identity key needed to decrypt the message
without compromising the secrecy of messages sent to j by honest senders.

In the full verifiable accusation scheme, sender i encrypts secret message m
being sent to node j as Encrypt(PKj, e, i, m) where PK is js public encryption
key and e is the epoch. Node j decrypts this message using a secret key based
on the pair (e, i); thus the key depends both on the epoch e (as in forward-secure
encryption) and on the identity of the sender (thus the encryption is identity
based). To accuse node i, node jreveals the identity key for (e, i) in step 3 of the
protocol. Other nodes can use this key to determine whether js accusation is
valid, but releasing the key doesn’t help the adversary decrypt messages from
other senders to j, for either the current or later epochs.

Step 4 of the protocol is simpler when verifiable accusations are used. The
primary checks whether accusations are valid, and if so removes all accused
proposals from the current-set and adds the responder to the accept-list; other-
wise, it adds the responder to the conflict-list.

Checked accusations ensure that only invalid proposals are discarded in
step 4. Therefore it is sufficient to start with ¢ + 1 proposals; one of them must
be from an honest node and it will not be discarded. Furthermore, honest nodes
are always added to the accept-list: once we have 2¢ + 1 responses, at least ¢+ 1
of them will be from honest nodes, and they will accept all remaining proposals.
Thus, the primary need only wait to receive 2t + 1 responses, rather than for
the accept-list to reach a certain size.

6. CHANGING THE THRESHOLD

Our protocol allows the size of the group to change while the threshold ¢ re-
mains constant, but this is uninteresting: The best way to configure the system
is to use a group of size 3¢+ 1, since a larger group cannot survive more failures,
but presents more targets for the adversary to attack. Changing the threshold
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is interesting, however, since this changes the number of failures the system
can tolerate.

To reduce the threshold by some amount v, we introduce v “virtual servers,”
each of which holds a share publicly. The shares of the virtual servers are
known at all real servers in the new group. This effectively reduces the thresh-
old, since all nodes know the public shares, and more generally, any group of m
nodes will know m + v shares where v is the number of virtual servers.

To increase the threshold, if there are more virtual servers than the amount
of the increase, we remove that many virtual servers. Otherwise we increase
the threshold by increasing the degree of the sharing polynomial.

In the following sections we first discuss how to decrease the threshold. Then
we discuss techniques for increasing the threshold when the degree of the poly-
nomial has to increase.

6.1 Reducing the Threshold

To reduce the threshold, we change the protocol as follows. In Step 2, the
real servers generate polynomials with the same degree as the current share
polynomial P. This polynomial has degree t+v where v is the number of virtual
servers, and ¢ is the current threshold.

A node does not make proposals on behalf of a virtual server, but does eval-
uate proposals on its behalf, and makes accusations against any proposal that
doesn’t pass both its own check and the virtual server’s check. Virtual servers
are not involved in agreement, and cannot serve as primary. Any real honest
node that ends up on the accept-list will be able to do the resharing for its vir-
tual servers as well as for itself and will send points on behalf of itself and the
virtual servers to the new nodes; all honest real old nodes will send out identi-
cal points for each of the virtual servers. Since at least ¢+ 1 honest real servers
end up on the accept-list, new nodes will receive ¢ + v + 1 points and therefore
can recover their shares.

New nodes send receipts when they have ¢ + v + 1 points (but they need to
receive only ¢ + 1 valid matching messages to do so). In step 9 old nodes delete
the resharing messages when they have received ¢ + 1 receipts, where ¢ is the
threshold in the new group. Since the adversary can never have more than ¢
corruptions in the new group, having # + 1 receipts implies that at least one
good node received the message, and that node will forward the shares so that
all good nodes will eventually receive them.

Since virtual servers do not send proposals or transfer information to the
new group, they are not involved in the most expensive parts of MPSS. Hence,
reducing the threshold from ¢ to # in this way decreases the protocol overhead,
even though the share polynomial still has degree ¢t. The effective security
of the resulting configuration is the same as if the system had initially been
configured to tolerate ¢ faults.

6.2 Increasing the Threshold Using the Base Protocol

This section discusses how to increase the threshold when using the base pro-
tocol (the one without verifiable accusations). We accomplish this by first
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resharing the secret to a larger group without increasing the degree of the
polynomial; then the larger group increases the degree of the polynomial and
does a second resharing. This approach allows us to overcome two problems
that arise when using the base protocol.

First, in a group of exactly size 3¢ + 1, we can only increase the threshold
by 1. The reason for this limitation is that good nodes can eliminate only one
proposal that is bad for them. Suppose the initial proposal set contains ¢ bad
proposals, and all bad proposals contain good information except for a specially
targeted set of t — 1 good nodes. Suppose also that we receive acceptance mes-
sages from all good nodes. Even so, the final proposal set will contain one bad
proposal, because each of the # — 1 targeted nodes will be able to remove just
one proposal from the proposal set. Therefore the final proposal set will work
only at the ¢ + 2 good nodes that weren’t targeted and as a result, new nodes
can receive only this many points. Since new nodes need to receive # + 1 points,
where ¢’ is the new threshold, the threshold can increase by at most one in a
resharing.

Second, there is a termination problem: there is no point at which it is safe
for old nodes to delete their secret information. Suppose we are increasing the
threshold by 1. Then new nodes require ¢+ 2 resharing messages to reconstruct
their shares, which implies that the proposal set must be valid for ¢ + 2 honest
old replicas. One possibility is that step 4 completes with a final proposal set
that works for more than ¢ + 1 honest nodes; then the resharing will complete.
However, step 4 might complete with a final proposal set that works for exactly
t + 1 honest nodes, which isn’t enough for new nodes to construct their shares.
In this case the resharing cannot complete. And there is no way for the primary
to distinguish these two situations.

However, if the proposal set works for exactly ¢ + 1 honest replicas, there is
at least one additional honest replica whose acceptance message hasn’t been
processed in step 4. Therefore if we are willing to continue to run step 4 in
parallel with the later steps of the protocol, we can arrive at a proposal set that
works for enough honest old replicas. The idea is that if the primary receives
an additional acceptance message that causes a reduction in the proposal set,
it does a second round of agreement. After the second agreement we can be
certain that the resharing will occur.

The problem is that old nodes don’t know when to delete their shares. If they
delete them when they send their resharing messages after the first run of the
agreement protocol, this might be too early: they may need those shares to send
resharing messages for the reduced final proposal set, in case the protocol runs
a second time. However, the protocol might not run a second time, so waiting
for this to happen also doesn’t work.

In general, there is no way to determine whether one or two runs of the
protocol will be needed. Thus it is impossible to know when old nodes can dis-
card their secret information, because we cannot be sure whether the proposal
selection steps need to run once or twice.

It may seem that old nodes can be informed by new nodes about whether the
resharing worked. We could delay this decision point as much as possible: new
nodes reply only when they have ¢ + 2 resharing messages that work for them,
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(1) The protocol runs a first agreement in which the proposal set contains proposals from 01 —o03.
These proposals have been agreed to by these three nodes, but ol’s proposal is bad for o4.

(2) ol — 03 send points to the new nodes based on this proposal set. ol’s points are good for
nl — nb but bad for n6 and n7.

(3) ml—mnb receive their points and interpolate to compute their shares. Then they send receipts
to ol — 03.

(4) 02 and 03 receive 2t + 2 receipts and discard their secret information.

(5) The primary receives a message from o4 accusing ol. It adjusts the proposal set by removing
ol’s proposal and reruns the agreement.

(6) 04 now sends points to the new nodes based on the final proposal set. However, 02 and 03
are unable to do this since they discarded their secret information.

(7) m6 and n7 request resharing messages from old and new nodes and nodes nl — n5 forward
resharing messages they received previously. However n6 and n7 cannot interpolate to form
their shares since ol1’s message is bad for them, and 04’s message cannot be combined with
those of the other old nodes since it concerns a different proposal set.

Fig. 4. Scenario illustrating the termination issue. There are four old nodes, ol,...,04; ol is
bad. There are seven new nodes, nl, ..., n7.

and old nodes wait for 2¢ + 2 such messages. But all this guarantees is that
t + 2 honest new nodes can reconstruct their shares; there could be another ¢
honest new nodes that aren’t able to do this. The reason is that some of the ¢+ 2
resharing messages that worked at an honest new node might be from bad old
replicas and might not work for other honest new nodes: the fact that the new
node has its share does not imply that all new nodes will be able to get their
shares. This is true in our current protocol too, but in that case other honest
old nodes will be sending messages that will work at the other new nodes: our
protocol guarantees that enough such resharing messages will be sent. No such
guarantee exists here. The problem is illustrated by the scenario in Figure 4.

Moving the secret to just ¢ + 2 new nodes allows the new nodes to use the
secret, for example, to sign messages. But they are unable to transfer the
secret in the next epoch, because this requires that a/l honest nodes know their
shares. The situation could be resolved if there were a way for the other honest
new nodes to recover their shares. This is possible with verifiable accusations
as discussed in Section 6.3, but not with the base protocol.

We can overcome these problems by using an indirect approach: we first
move the secret to an intermediate group, and then the intermediate group
reshares the secret to the final group. The intermediate group is larger than
the initial group, but has the same threshold # the final group has threshold
t + c. The size of the intermediate group is 3¢+ 1 + ¢; the size of the final group
is 3(t+c) + 1.

The resharing to the intermediate group works exactly as now. The main
changes to the resharing from the intermediate group to the final group are
as follows. First, in step 1 honest nodes produce polynomials of degree ¢ + c.
Second, step 4 completes when the accept-set is of size 2t + 1 + ¢ — d (where d
is the size of the conflict list, as before). This way we ensure that ¢ + ¢ + 1 good
old nodes are able to send resharing messages, and therefore the secret can be
transferred. Additionally since the intermediate group is of size 3¢ + 1 + ¢, it is
safe to wait for this many messages in step 4. Finally, in step 9 honest old nodes
wait to receive ¢ + ¢ + 1 receipts before discarding their resharing messages.
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6.3 Increasing the Threshold Using Verifiable Accusations

If we use verifiable accusations, we can reshare the secret directly from the
old to the new group, without using an intermediate group. We are no longer
limited to an increase of 1, because with verifiable accusations honest nodes
can eliminate all proposals that are bad for them. However, we still have the
problem of possibly needing to do additional iterations because earlier proposal
sets didn’t work for ¢ + ¢ honest nodes.

The protocol executes in a series of iterations as discussed in Section 6.2, and
for the same reason: in step 4 we may not heard from enough honest nodes to
allow the secret to be transferred, and we compensate by running the protocol
again when additional messages are received. It is no longer necessary to limit
the threshold to grow by 1; instead it can grow by c. However, we require ¢ < ¢
this is needed because new nodes require ¢ + ¢ + 1 resharing messages, and
there may be only 2¢ + 1 good nodes in the old group. The maximum number of
iterations is c + 1.

The changes to the protocol are as follows (here ¢ =¢+c¢).

—Run the resharing protocol with verifiable accusations. Each iteration has
an iteration number and this number is sent in the resharing messages. Old
nodes do not discard their secret information immediately upon generating
shares for the new nodes; they delay as discussed shortly.

—The primary runs step 4 in parallel with the earlier iterations. If it receives a
new message containing valid accusations of proposals currently in the pro-
posal set, it adjusts the proposal set and starts the next iteration of agree-
ment and resharing.

—When a new node has ¢ + 1 valid resharing messages all for the same itera-
tion, it sends success messages to all old servers informing them about this.

—When an old node has 2¢ + 1 success messages all containing the same it-
eration number, it discards all its secret information for epoch e. Then it
concatenates the success messages and sends them as a completion certifi-
cate to the new nodes.

—New nodes send receipts for these certificates (if valid) to the old nodes. When
an old node has # + 1 such receipts, it can delete its resharing messages and
completion certificates.

—New nodes run BFT to agree that the resharing of a particular iteration, for
which some of them have received completion certificates, is the one they will
use to compute their shares.

The result is that new nodes will produce shares based on the same polynomial
P’ and old nodes will be able to stop working on the resharing.

However, there is a problem: as discussed in the previous section the afore-
said protocol only guarantees that ¢ + 1 new honest nodes get their shares. The
agreed to certificate might be for resharing messages that work at only # + 1
honest new nodes and are bad for the rest. In order to do the next resharing, we
need a way for a node that is missing its share to recover it from other replicas.
This is possible using verifiable accusations.
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A node i that is missing its share runs a recovery protocol. This protocol
mimics the first steps of the normal resharing protocol.

(1) Node i requests proposals from other nodes.

(2) Honest nodes create random polynomials such that R(:) = 0 and send points
and verification information about them to i.

(3) Node i waits for ¢ + 1 valid proposals and sends out the proposal set.
(4) Honest nodes respond with acceptance messages containing accusations.

(5) Node i processes accusations and forms the final proposal set when it has
received 2¢ + 1 responses. It sends the final proposal set to all nodes, along
with the messages it received.

(6) Honest nodes then send points to i, encrypted for it, if they have their share
and if the proposal set is good for them.

(7) If i receives t' + 1 valid resharing messages, the protocol is finished; it ex-
trapolates using the information to recover its share.

Thus this protocol is like our resharing protocol except that it is run by :
and requires no agreement. An additional point is that it may be necessary to
continue accepting accusations in step 5 given before and then run steps 6 and
7 again, because the proposal set produced in step 5 might not be good for at
least # + 1 honest nodes that have their share. However, eventually ¢ will hear
from all of these nodes, and at that point the protocol will be able to complete.

The reason we need verifiable accusations for the recovery protocol is be-
cause the resharing protocol can ensure only that # + 1 honest nodes have their
share when resharing completes. Therefore the recovery protocol must end up
with a proposal set that works for precisely these honest nodes. And this re-
quires that an honest node be able to accuse and remove all proposals that are
bad for it. Verifiable accusations allow an accuser to remove multiple proposals;
without verifiable accusations this isn’t possible.

6.4 Discussion

The indirect approach has the obvious advantage that it can be used with ei-
ther resharing protocol; it doesn’t require the use of verifiable accusations and
identity-based forward-secure encryption. However, even when using the veri-
fiable accusations, so that the direct approach is possible, we prefer the indirect
scheme. First, it is more efficient than doing a direct resharing. It’s true that
the indirect scheme requires two runs of the protocol, but the direct protocol
might require up to c iterations plus it needs an additional run of BFT (in the
new group) and also the recovery protocol. Additionally, the indirect approach
is simpler than the direct scheme, and imposes no limit on the amount by which
the threshold can grow in a resharing.

Another point is that the drawbacks of the indirect scheme are more ap-
parent than real. The indirect scheme doesn’t actually require an additional
group of replicas; instead the intermediate group can be a subset of the final
group. The intermediate group is slightly more vulnerable to attack because
it doesn’t have the minimal size of 3¢t + 1. However, it is in existence for a
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very short time: just long enough to do the resharing. And note that in the
direct scheme, old nodes need to keep their secret information for a longer time
(through potentially several iterations of the protocol, until they receive the
success messages); with the indirect scheme secrets are discarded in step 7 in
both the initial and intermediate groups.

7. PERFORMANCE

This section discusses the performance of our system. Our protocol is designed
to perform well in the optimistic case and degrade gracefully in the face of
failures, so we consider two cases.

Normal case. In the normal case, there are no faults or a small constant
number of faults. We expect this to be the common, and hence, the most impor-
tant case.

Worst case, adaptive adversary. Here we assume an adaptive adversary that
behaves arbitrarily badly and can corrupt nodes at any point during the execu-
tion of the protocol, up to a maximum of ¢ corruptions.

7.1 Normal Case

In the normal case we would like to have both low bandwidth utilization and
low latency to transfer the secret, and we achieve both of these goals.

Our latency is just 7 message delays from the time old nodes start the re-
sharing protocol until new nodes receive their shares (our steps 1-3 and 7, plus
the preprepare, prepare, and commit messages of BFT). The total number of
messages sent is 4n? + 3n, where n is the size of the group.

Most of the messages we send are small (either constant or O(n) size). The
exceptions are the messages sent in steps 1 and 7; these are of size O(n?).
In these steps nodes need to send commitments for n polynomials; for each
polynomial, information of size ¢ is needed. The messages are sent to all n
nodes, and therefore bandwidth utilization is O(#?).

Our asymptotic performance is as good as that of the scheme of Cachin et al.
[2002], and better than that of the scheme of Zhou et al. [2005], which consumes
an exponential amount of bandwidth. Having better asymptotic performance
allows our system to work with a larger ¢ than could be supported by the Zhou
scheme. We discussed how to choose ¢ in Section 3.4; our scheme is practical
across the range of expected values of ¢£. At the upper end of the range, doing
a resharing requires hundreds of megabytes of communication, but this is still
plausible for a protocol that is run infrequently.

7.2 Worst Case

We would like to ensure that even in the worst case, the protocol consumes
a reasonable amount of bandwidth and completes in a reasonable amount
of time.
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In the pessimistic case up to ¢ view changes may be required to compensate
for dishonest primaries.? This cost can be avoided by running these rounds in
parallel (as is done in the Zhou scheme), but that choice leads to more mes-
sages being exchanged in the optimistic case. We have chosen (as was done for
BFT [Castro and Liskov 2002]) to avoid the extra costs in the normal case since
this is the case that is likely to occur in practice.

Also, in the pessimistic case where there are ¢ faults, in step 3 the (hon-
est) primary may need to resend proposals and commitments that faulty nodes
sent to it but not to other nodes, or that faulty nodes claim weren’t sent to them.
Thus, the primary may have to send ¢ messages of size O(#?) to each of the n
nodes, at a total cost of O(¢*) bytes. However, we have developed a variation on
the protocol that avoids this cost. Rather than asking the primary for missing
proposals, nodes instead inform the primary of votes on proposals not in the
proposal set in step 3. The primary uses these extra votes to evaluate other
proposal sets, if the one it selected doesn’t reach the termination condition by
some timeout. Evaluating other proposals is NP-hard: the primary must con-
sider all possible proposal sets simultaneously. However, the computation is
tractable for ¢ < 10 and thus works fine in expected deployments (e.g., for t = 4
or ¢t = 5). This combined technique leads to low latency in the normal case,
and moderate latency in the worst case; nodes may need to send up to ¢ ad-
ditional vote messages to the primary in the worst case, but these messages
are small.

8. CONCLUSIONS

This article explains why mobility is important for a secret-sharing scheme in a
long-lived system and presents MPSS, an efficient and practical scheme for mo-
bile proactive secret sharing in an asynchronous network. In MPSS, the group
of shareholders can change completely as the secret is reshared. MPSS also al-
lows the threshold to change when the secret is reshared, allowing the system
to be reconfigured on-the-fly to accommodate changes in the environment.

MPSS uses a novel algorithm for handling accusations in an asynchronous
network when we cannot determine whether the accuser or accused node is
lying. We also present verifiable accusations which improve the efficiency of
MPSS, but require the use of identity-based forward-secure encryption. Both
of these schemes for handling accusations appear to be useful primitives inde-
pendent of MPSS.

In addition, MPSS uses an efficient resharing protocol intended to be used
in practice; Section 7 discusses its performance. The protocol exchanges mostly
small messages, with a few of size O(n?); it transfers the secret in 7 message
delays in the normal case of no or a few failures.

2Additional view changes may be required if our timeouts are too short, but Castro and
Liskov [2002] point out that spurious view changes are rare enough to be negligible.
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APPENDICES
A. EXTENSION OF FELDMAN VSS

In verifiable secret sharing schemes, messages contain extra information in the
form of commitments that allow recipients to check whether information sent
to them is correct.

Here we describe Feldman’s VSS scheme [Feldman 1987]. In Feldman’s
scheme, the secret is shared by generating a random degree ¢ polynomial P
such that P(0) is the secret s. The verification information is computed using
a cyclic group with generator g, which is a public system parameter. When P
is generated, commitments are given for each coefficient: ¢y = g? = g% and
generally ¢; = gPi. (Because g° will be public, the actual secret must be included
in only the hard-core bits of s. We refer the reader to Herzberg et al. [1995] and
Feldman [1987] for a discussion of this issue.) Now each node can compute

t
gFo = chzjf
=0

and thus check if the share s; it receives is equal to P(i) by checking if g = g

We use Feldman scheme extended with some additional check equations. We
do not cover the details of these checks here (see Schultz [2007]), but the basic
principle is as follows. Since exponentiation is homomorphic, that is, ¢ = a+b <
g = g%%, we can verify properties of polynomials we do not know by verifying
properties of the commitments. For example, if Z(x) = z9 + z1x + --- + 2!
and we have Feldman commitments g*°, g*1, ..., g%, we can check that Z(3)=0
by verifying that g#°(g®1)3 - - - (g#)% = g° = 1.

PG)

B. FORWARD-SECURE IDENTITY-BASED ENCRYPTION

To allow for verifiable accusations, we use a forward-secure identity-based en-
cryption scheme. The scheme of Yao et al. [2004] would suffice, but provides sig-
nificantly more powerful security properties than we need, and is much more
complex than forward-secure encryption. We prefer to use a straightforward
modification of the Canetti et al. scheme [Canetti et al. 2003], which is the first
known forward-secure encryption scheme in the literature. Our modification is
along the lines of a solution proposed by Yao et al. [2004] but dismissed as not
sufficient for their security goals. However it suffices for ours.

Our forward-secure IBE scheme is based on hierarchical identity-based en-
cryption, specifically Binary Tree Encryption (BTE). In BTE, an identity is a
sequence of bits: b1, ..., b. The secret key for identity b1, ..., b can be used
to derive the secret key for any identity that starts with b1, ..., 6%. The public
key can be used to encrypt a message for any identity, but only the secret key
for that identity can be used to decrypt.

Canetti et al. [2003] describe how to adapt BTE into a forward-secure en-
cryption scheme through the concept of pebbling. The epoch e is encoded as a
k-bit identity for some fixed k. The scheme keeps track of enough state to derive
the secret key for identity e and all identities greater than e, but no identities
less than e.
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This can easily be extended to allow for identity-based forward-secure en-
cryption, which is parameterized on identity i and epoch e. We use a further
level of BTE hierarchy for the identity. Since the key output by the Canetti et
al. scheme for epoch e is an ordinary BTE key, we can derive from it the key for
the identity e|i.

Once we have identity-based encryption, we can use the method described
in Section 5.2 to implement provable accusations. Note that the specific secret
key for a certain epoch with a certain identity is not hierarchically “above” any
key that would be used in the future (because we include both i and e in ID):
therefore, revealing it is safe.

There is one caveat here: the properties of identity-based encryption assume
that the generator of the key is honest. However, this should not be a problem
for our application; it is reasonable to assume that nodes cannot be corrupted
before they generate their keys.

C. CORRECTNESS

In this appendix, we discuss what it means for MPSS to be correct, and we
prove some of the more interesting claims. The proofs we present are infor-
mal and are focused on our protocol and our algorithm for resolving votes and
selecting proposals; many of the cryptographic details are relegated to Schultz
[2007]. Because our primary purpose here is to argue the correctness of the pro-
tocol, we do not use standard notions from cryptography such as computational
indistinguishability. Strictly speaking, such formalism would be required for
most theorems because verifiable secret sharing necessarily relies on computa-
tional assumptions.

The purpose of MPSS is to transfer a shared secret to a new group of share-
holders, using a new sharing that is distinct from the old one. The old share-
holders throw their shares away, so that an adversary that has corrupted up to ¢
nodes in the old group learns nothing about the secret by corrupting additional
nodes in the old group in the future. In what follows we show that MPSS is
both safe and terminates. Safety requires that we preserve secrecy (the secret
is not revealed) and integrity (the secret is not corrupted).

Our proofs depend on the definitions of epochs and the constaint on the ad-
versary given in Section 5.1. We discuss a weaker constraint in Section C.4.

C.1 Secrecy

Informally, the secrecy property says that the adversary never learns the se-
cret, given shares it knows from present and past epochs, and information ex-
posed in the execution of the resharing protocol. Since both MPSS and the
scheme of Herzberg et al. [1995] produce a new share polynomial of the form
P =P+ @ with Q(0) = 0, we do not repeat their secrecy argument here.

Our protocol produces the polynomial @ differently from the Herzberg et al.
scheme, however, so we need to justify that the coefficients of @ + R;, are ran-
dom and independent of anything the adversary knows, even if some of the
adversary’s proposals are used to construct @ + Rj. Intuitively, this is true be-
cause the proposal selection algorithm used by the primary always chooses at
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least one good proposal, which is random. Combining this proposal with the
adversary’s proposals via modular addition constitutes a one-time pad.

THEOREM S-1. Any proposal set that honest nodes agree to in MPSS con-
tains at least one proposal from an honest node.

PROOF. In step 2, the primary collects 2¢ + 1 proposals as an initial proposal
set; since no more than ¢ nodes are dishonest, at least ¢ + 1 of these proposals
come from honest replicas. In step 4, the primary processes accusations and
removes accused proposals from the current-set. Each accusation causes the
removal of at most one good proposal: a bad node can remove a good proposal
by accusing it, and when a good node accuses a bad proposal, its own proposal
might also be removed. In either case, both the accuser and the accused node
are added to the conflict-list. Since at least one of them must be bad, d is a lower
bound on how many bad nodes are in the conflict-list and also an upper bound
on the number of good proposals that have been removed from the proposal set.
Since d < t, at least one honest proposal remains. O

A caveat with the preceding secrecy argument is that the adversary must
not be able to generate proposals based on the proposals from honest nodes. For
example, if an honest node generates proposals and sends out pi1, p2, ..., Psu1,
with each point encrypted with the appropriate node’s key, a bad node B could
arrange for the final polynomial to be the zero polynomial by sending out
—p1, —P2, ..., — P31 asits points. It could do this without decrypting the points
if it knew that flipping a particular bit in the ciphertext resulted in the sign bit
flipping in the plaintext. Therefore, we require an encryption scheme that is
secure against adaptive chosen ciphertext attacks; it is well-known that this
implies nonmalleability, and that therefore, the aforementioned attack will not
work.

Furthermore, we must show that nodes in the old group do not learn shares
of honest nodes in the new group (unless they are the same node). The
Herzberg et al. scheme does not support mobility, that is, the old and new
groups are identical, so this is not a problem for them. They must still cope
with a mobile adversary, but in a more limited way. In their scheme, an adver-
sary who controls ¢ nodes can choose to uncorrupt a node in epoch e, then later
corrupt a new node in epoch e + 1, whereas in MPSS, ¢ nodes in the old group
and ¢ nodes in the new group are corrupted simultaneously.

THEOREM S-2. If Bisa bad node in the old group and A is an honest node in
the new group, B doesn’t learn anything about A’s share, P'(A) = P(A) + Q(A).

PROOF. B knows its own share, P(B), and the values of the @ + R4 poly-
nomial at the ¢ or fewer points corresponding to the old nodes the adversary
controls, including B. None of these points is Q(A)+ R4(A) = Q(A), because A
is an honest node in the new group and not a dishonest node in the old group.
By Theorem 1, @ + R4 is a random polynomial of degree ¢, so the adversary’s ¢
points are independent of @(A) + R;(A), and hence independent of P'(A). O
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Remark. Note that the proposal selection algorithm guarantees that the fi-
nal proposal set contains at least one proposal from an honest node, but in the
worst case it could contain exactly one, for example, the one from C. In this
case, C knows @ + R and therefore knows the new shares. But since in this
case C must be honest, it will simply throw this information away.

The previous theorems take for granted that the adversary is effectively
restricted to the information we expect it to be able to learn: messages to cor-
rupted parties, messages sent from corrupted parties, and the shares of cor-
rupted parties. However, our assumptions about the adversary allow a great
deal of freedom in the network, including the ability to read and alter any
message between honest parties. We rely on forward-secure encryption and
forward-secure signatures to protect the privacy and integrity of those mes-
sages. While this would seem to guarantee the property we need, we need an
additional assumption: that selective decryption of messages leaks no unex-
pected information. This is an open problem in cryptography [Dwork et al.
2003], but is thought to be true, and in any case it is needed to guarantee
Byzantine security in a real network. Prior papers in this area avoid this
issue by assuming secure channels, but in a real application we must imple-
ment secure channels through encryption and signatures. This assumption is
needed for another reason also: the public commitments to each party’s share,
combined with the adversary’s ability to later selectively corrupt parties and
learn their share, forms another selective decryption scenario. Since we must
make this assumption in any case, it is therefore reasonable to use Feldman
VSS rather than the more expensive but perfectly-hiding Pedersen VSS scheme
[Pedersen 1991].

C.2 Integrity

Integrity requires that each honest node in the new group that computes its
new share constructs a share based on the same polynomial P’ such that P'(0) =
P(0). This ensures that the honest new nodes have shares of the same secret
and that these shares can be combined together to recover the secret.

The fundamental reason integrity is preserved is because of the way we use
commitments. When the old group agrees to a set of proposals to use, they
are actually agreeing to a set of commitments to polynomials whose points are
secret. However, each node can verify that the commitments match the points it
knows, and that the commitments identify well-formed @ and R; polynomials,
that is, ones with zeros in the correct places. Hence, honest nodes only send
consistent points on well-formed P + @ + R;, polynomials to the new group. The
new group, furthermore, only uses those points that match the agreed-upon
commitments.

THEOREM I-1. Each new node that computes its share constructs its share
based on polynomial P and furthermore this polynomial represents the same
secret as in the old group, that is, P(0) = P'(0) = s.

PROOF. Old node j will accept a proposal point z; ;; from i only if the com-
mitments prove that it is valid. In particular, i must commit to polynomials @;
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and R;; such that @;(0) = 0 and R;;(k) = 0, which j uses the commitments to
verify. Furthermore, the commitments must prove that i sent jthe right point,
zijr = Qi() + R;iz(j). The old group then agrees to a set of proposals, and if
J accepts all the proposals in this set, it sums Q()) + Br(j)) = >, @i() + Riz()).
Note that @(0) = 0 and Ry(k) = 0. Then j sends P(j) + Q()) + Rr(j) to k& in the
new group. Each honest new node £ that computes its share does so based on
¢t + 1 resharing messages with matching commitments. Since at least one of
these messages must have come from an honest old node, new node % obtains
commitments to P, @, and Ry. It uses the commitments to identify a set of £+ 1
valid points on P + @ + Ry, and interpolates to recover this polynomial. Then it
computes P(k) + Q(k) + Rp(k) = P(k) + Q(k) = P'(k). Note that P — P' = @ and
Q(0) =0, so P(0) = P'(0) =s. O

C.3 Termination

To prove the liveness of MPSS, we argue that each of the three phases—
proposal selection, agreement, and share transfer—terminate.

C.3.1 Agreement. The BFT agreement step terminates assuming the strong
eventual delivery assumption of Section 3 holds. See Castro and Liskov [2002]
for details.

View changes can occur when there are timeouts at the honest nodes, and
in this case it is possible that the primary is actually honest, for example, it
sends messages but they are lost. However, even in this case, eventually there
will be an honest primary that is given enough time to complete its work; in
our case to select the final proposal set and run the agreement. The details are
in Castro and Liskov [2002].

C.3.2 Proposal Selection (steps 1-4). Termination of proposal selection is
nonobvious because even though there may be no more than 2¢+ 1 honest nodes
in the system, proposal selection may wait for more than 2t + 1 votes. However,
this only happens if inconsistencies in the votes received so far prove that some
of the votes are from faulty nodes, so we are able to argue that the primary will
only wait if there are nonfaulty nodes it has yet to hear from.

THEOREM T-1. The proposal selection step terminates after processing at
most 2t + 1 responses from nonfaulty nodes.

PROOF. When a response contains an accusation against the current set,
either the accuser or the accusee is faulty, and we add both to the conflict-
list and increment d. Hence d represents an upper bound on the number of
nonfaulty servers in the conflict-list. At any point, each server whose response
has been processed by the algorithm so far is on the accept-list or the conflict-
list. Therefore, upon processing 2¢ + 1 responses from honest servers, the size
of the accept-list is at least 2¢+ 1 — d, which is the termination condition for the
algorithm. O

C.3.3 Share Transfer. Proving that share transfer terminates has three
parts. First, we show that, given that honest nodes know their shares, at least
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t + 1 honest nodes send share transfer messages to the new group. Next, we
show that if at least ¢ + 1 honest nodes send share transfer messages to the
new group, then all the honest nodes in the following epoch can obtain their
shares. Then by induction, every resharing is able to terminate as long as the
honest nodes in epoch 0 have their shares. The following lemma proves the
first property.

LEMMA T-2. If 2t+ 1 honest servers in epoch e that know their shares run the
MPSS protocol, at least t+ 1 honest servers will send share transfer messages to
the new group (i.e., the group for epoch e + 1).

PROOF. Whenever the primary processes an accusation in step 4, either the
accuser or the accusee is faulty, so the primary removes both nodes from the
accept-list and increments d. Hence, at most ¢ — d faulty servers are on the
accept-list. step 4 terminates when 2¢ + 1 — d nodes are on the accept-list, of
which at least £ + 1 must be honest. These ¢ + 1 honest nodes are satisfied with
the chosen proposal set and generate share transfer messages in step 7. O

Next, we argue that if £+ 1 honest nodes send share transfer messages to the
new group, then the honest nodes in the new group will eventually get their
shares. We cannot ensure that this is possible by the time MPSS terminates in
the old group, because we want the old nodes to be able to discard their secret
information as soon as possible. However, we can ensure that each honest node
that doesn’t know its share can ask its peers for the encrypted messages that
allow it to compute its share.

LEMMA T-3. If t + 1 honest nodes in epoch e send share transfer messages to
the new group, then each honest node in epoch e + 1 will be able to obtain its
secret share.

PROOF. In step 9, an old node that sends share transfer messages waits for
t+ 1 acknowledgements from ¢ + 1 distinct nodes in the new group, at least one
of which must be honest. Furthermore, the share transfer messages contain
(encrypted) points for all the nodes in the new group, so any node % in the
new group that doesn’t have its share can request the points from its peers at
any time in epoch e + 1. Honest peers reply by sending the points. Therefore
node %k will get the points from all the honest old nodes that sent them, either
by direct communication with the old nodes, or by obtaining their resharing
messages from other new nodes. Given ¢+ 1 points, £ can interpolate to recover
its secret share. O

Finally, we combine Theorem T-1 and Lemmas T-2 and T-3 to show that
MPSS terminates.

THEOREM T-4. When MPSS is run in any epoch e, the secret is transferred to
the new group and each node enters local epoch e + 1 in a finite amount of time.

PROOF. We assume that all honest nodes have their shares in epoch 0, when
the system is first initialized. The proof is by induction on e. If 2¢+ 1 hon-
est nodes in epoch e know their shares, the primary will receive votes from
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these honest nodes and therefore the proposal selection step will terminate by
Theorem T-1. By Lemma T-2, at least ¢ + 1 honest nodes will be able to use the
agreed-upon proposal set. Thus, by Lemma T-3, each honest node in epoch e + 1
will be able to obtain its share, completing the induction. O

C.4 Alternative Definition for Epochs

In this section we describe a weaker constraint on the adversary.

—Weak Compliance Constraint. The adversary is weakly compliant through
epoch e if, for every epoch i < e, it is able to corrupt no more than ¢ replicas in
G; while they are in any epoch up to i.

Note that we do not require a global notion of epoch with this definition.

This definition constrains the adversary less than our original compliance
constraint, because the adversary is allowed to corrupt an honest node in G,
after it leaves epoch e even if other honest nodes in the group are still in epoch e.
Since weak compliance constrains the adversary less than system compliance,
a system that works correctly under weak compliance also works under system
compliance but not vice versa.

However, to implement a system that works under the weak compliance con-
straint, we need to use forward-secure signing [Krawczyk 2000]: when a node
leaves an epoch, it advances its secret signing key so that if it is corrupted after
that point it will not be possible for the adversary to impersonate it. Otherwise
there is an attack that can be launched by the adversary. We call this attack
the isolation attack. The attack takes advantage of the adversary being allowed
to corrupt an honest node after it leaves epoch e!

The isolation attack works as follows. Suppose the adversary has corrupted ¢
replicas in G,, and additionally it isolates one of the group’s good replicas, r, so
that r is unable to receive its messages for a long time. During this period the
other good replicas in G, do a resharing and leave epoch e. This resharing is
based on a proposal set that contained proposals from each of the bad replicas;
all these proposals are known to the adversary and at least some of them are
good for r.

The adversary already knows ¢ points on the old polynomial P (since ¢ of
the old nodes were corrupt). Subsequently, the attacker corrupts one of the
formerly honest nodes, after it has left epoch e. Although it isn’t able to learn
the secret information of that formerly honest node (since this was discarded
when the node left the epoch), it is able to impersonate it, since it now knows
the node’s signing key. This allows it to rerun the protocol using the original
proposal set but with more than ¢ bad nodes. Therefore in step 4 it will be
possible for bad nodes to remove all good proposals, leaving us with a proposal
set containing only proposals known to the adversary. Since the proposal set
looks good to the isolated node it will be willing to send its points to the new
nodes; these are points on a polynomial P’ = P + R, where R is known to the
adversary. If just one of the new nodes is corrupt, the adversary will be able to
learn the points sent by the isolated node. It can then combine this information
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with what it already learned to recover the original polynomial P, and thus the
secret.

To our knowledge the definition of weak compliance is new and so is the
observation about forward secure signing and its use in avoiding the isolation
attack.
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